Abstract P2-11-16: Computerized Measurements of Nuclear Morphology Features, Mitosis Rate, and Tubule Formation from H&E Images Predicts Disease-Free Survival in Patients with HR+ & LN+ Invasive Breast Cancer from SWOG S8814

三苯氧胺 医学 乳腺癌 内科学 肿瘤科 比例危险模型 病理 癌症
作者
Yu‐Li Chen,William E. Barlow,Haojia Li,Cheng Lu,Andrew Janowczyk,Germán Corredor,Shridar Ganesan,Michael Feldman,Pingfu Fu,Hannah Gilmore,Kathy S. Albain,Lajos Pusztai,James Rae,Daniel F. Hayes,Andrew K. Godwin,Alastair M. Thompson,Anant Madabhushi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (5_Supplement): P2-16
标识
DOI:10.1158/1538-7445.sabcs22-p2-11-16
摘要

Abstract Background: Lymph node (LN) involvement is a strong indicator of poor prognosis for breast cancer (BC), with adjuvant chemotherapy remaining fundamental to management of these patients. SWOG S8814 was a Phase III randomized trial of postmenopausal patients with pathologic LN-positive BC who were hormone receptor positive (HR+). The objectives of the clinical trial were to compare disease free survival (DFS) and overall survival (OS) of 1) these postoperative patients treated with a combination of cyclophosphamide, doxorubicin, fluorouracil (CAF) plus tamoxifen versus tamoxifen alone; and 2) patients treated with CAF followed by tamoxifen versus CAF plus concurrent tamoxifen. In this study we sought to evaluate the potential of applying computational image analysis on whole slide images (WSI) for predicting DFS and OS in SWOG S8814. Methods: A cohort of 135 patients (N=53 DFS event) diagnosed with HR+ & LN+ BC from clinical trial ECOG 2197 was utilized as training set D1. Validation set D2 comprised 630 patients (N=260 DFS event, N=195 death) with HR+& LN+ BC from SWOG S8814. Three deep learning models were employed to respectively detect nuclei, mitosis, and tubules in WSIs. Subsequently, a total of 1,810 features relating to nuclear morphology (e.g., spatial distribution, shape, texture, orientation), mitotic activity (e.g., mitosis hotspot, mitotic rates) and tubule formation (e.g., tubular nuclei distribution, ratio of tubule to non-tubule area) were extracted from each WSI. A lasso regularized Cox regression model (IbRiS) was trained on D1 to respectively identify four features from each of the feature categories (nuclei morphology, mitotic activity, and tubule formation) most strongly associated with DFS, a continuous risk score based on the selected features was then constructed. An optimal risk threshold was identified on D1 to dichotomize the risk scores into high vs. low risk of recurrence categories. Blinded validation of the machine learning model on SWOG S8814 using Cox regression was performed by SWOG to evaluate its performance in terms of DFS and OS. Results: In D2, patients identified as high risk of recurrence by IbRiS had a significantly worse prognosis in terms of DFS with hazard ratio=1.30 (p=0.039, 95% CI=1.01-1.66). IbRiS was also found to be significantly prognostic of OS with hazard ratio=1.38 (p=0.026, 95% CI=1.04-1.83). IbRiS was however, neither prognostic of DFS (HR = 1.20; 95% CI 0.93-1.54) nor OS (HR = 1.28; 95% CI 0.96-1.71) in multivariable analysis adjusting for treatment, tumor size, and number of positive nodes. IbRiS was also not a significant predictor of chemotherapy benefit (DFS p=0.45; OS p=0.25). Conclusion: We developed a prognostic model (IbRiS) based on the combined features of nuclear morphology, mitosis count, and tubule formation that can help further risk stratify HR+ & LN+ BC patients by only using H&E slides. Citation Format: Yuli Chen, William E. Barlow, Haojia Li, Cheng Lu, Andrew Janowczyk, German Corredor, Shridar Ganesan, Michael Feldman, Pingfu Fu, Hannah Gilmore, Kathy S. Albain, Lajos Pusztai, James Rae, Daniel Hayes, Andrew K. Godwin, Alastair M. Thompson, Anant Madabhushi. Computerized Measurements of Nuclear Morphology Features, Mitosis Rate, and Tubule Formation from H&E Images Predicts Disease-Free Survival in Patients with HR+ & LN+ Invasive Breast Cancer from SWOG S8814 [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P2-11-16.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhao发布了新的文献求助10
1秒前
bkagyin应助LastinGsonG采纳,获得20
2秒前
lezard发布了新的文献求助10
3秒前
3秒前
meng完成签到,获得积分10
3秒前
wu完成签到 ,获得积分10
4秒前
5秒前
stone完成签到,获得积分10
5秒前
fox完成签到 ,获得积分10
5秒前
烟酒生完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
天天快乐应助lezard采纳,获得10
7秒前
8秒前
彭猛发布了新的文献求助10
8秒前
如意小海豚完成签到,获得积分10
9秒前
10秒前
道听途说完成签到 ,获得积分10
10秒前
顾矜应助噢噢噢噢采纳,获得10
11秒前
你好CDY完成签到,获得积分10
12秒前
13秒前
搜集达人应助石榴汁的书采纳,获得10
13秒前
13秒前
14秒前
15秒前
汉堡包应助medlive2020采纳,获得10
15秒前
16秒前
斯文败类应助23xyke采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
科研通AI6应助闭眼听风雨采纳,获得10
17秒前
Lucas应助十三采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699399
求助须知:如何正确求助?哪些是违规求助? 4068178
关于积分的说明 12577605
捐赠科研通 3767840
什么是DOI,文献DOI怎么找? 2080931
邀请新用户注册赠送积分活动 1108811
科研通“疑难数据库(出版商)”最低求助积分说明 987057