Transformers in medical image segmentation: A review

计算机科学 图像分割 分割 变压器 人工智能 计算机视觉 编码器 配电变压器 电气工程 操作系统 工程类 电压
作者
Hanguang Xiao,Li Li,Qiyuan Liu,Xiuhong Zhu,Qihang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104791-104791 被引量:155
标识
DOI:10.1016/j.bspc.2023.104791
摘要

Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images. This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared. Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research. We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听雨完成签到,获得积分10
刚刚
1秒前
吴雪峰发布了新的文献求助10
2秒前
cuber完成签到 ,获得积分10
2秒前
oy关注了科研通微信公众号
3秒前
左右发布了新的文献求助10
3秒前
回笼觉睡不着完成签到,获得积分10
3秒前
heart完成签到,获得积分10
3秒前
田様应助diupapa采纳,获得10
4秒前
上官若男应助Harlotte采纳,获得10
4秒前
6秒前
赘婿应助快乐柴柴采纳,获得10
6秒前
7秒前
heart发布了新的文献求助10
7秒前
张三发布了新的文献求助10
7秒前
7秒前
10秒前
一小只完成签到,获得积分10
10秒前
搬砖中发布了新的文献求助10
11秒前
哈哈发布了新的文献求助10
12秒前
13秒前
去码头整点薯条关注了科研通微信公众号
14秒前
14秒前
15秒前
霸气的老虎完成签到,获得积分10
15秒前
英俊的铭应助keri采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840359
求助须知:如何正确求助?哪些是违规求助? 3382461
关于积分的说明 10524255
捐赠科研通 3102049
什么是DOI,文献DOI怎么找? 1708585
邀请新用户注册赠送积分活动 822570
科研通“疑难数据库(出版商)”最低求助积分说明 773415