Deep graph clustering with multi-level subspace fusion

聚类分析 人工智能 计算机科学 模式识别(心理学) 判别式 图形 数据挖掘 理论计算机科学
作者
Wang Li,Siwei Wang,Xifeng Guo,En Zhu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109077-109077 被引量:11
标识
DOI:10.1016/j.patcog.2022.109077
摘要

• Graph Convolutional Network is bothered by over-smoothness problem • Over-smoothness may decrease the distinction between dissimilar nodes • Self-expressive learning makes robust representations • The multi-level self-expressive learning captures multi-scaled information • The fusing of structure information from different scales increases distinction between nodes Attributed graph clustering combines both node attributes and graph structure information of data samples and has demonstrated satisfactory performance in various applications. However, how to choose the proper neighborhood for attributed graph clustering remains to be a challenge. A larger neighborhood may cause over-smoothed representations with less discrimination for clustering while the short-range ignore distant nodes and fails to capture the global information. In this paper, we propose a novel deep attributed graph clustering network with a multi-level subspace fusion module to address this issue. The first contribution of our work is to insert multiple self-expressive modules between low-level and high-level layers to promote more favorable features for clustering. The constraint of shared self-expressive matrix facilitates to preserve intrinsic structure without pre-defined neighborhoods as the previous methods do. Moreover, we introduce a novel loss function that leverages traditional reconstruction and the proposed structure fusion loss to effectively preserve multi-level clustering structures with both global and local discriminative features. Extensive experiments on public benchmark datasets validate the effectiveness of our proposed model compared with the state-of-the-art attribute graph clustering competitors by considerable margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tufei完成签到,获得积分10
刚刚
1秒前
ifhaceoiv发布了新的文献求助30
2秒前
风中的静曼完成签到 ,获得积分20
2秒前
2秒前
今后应助kim采纳,获得10
2秒前
木头完成签到,获得积分10
2秒前
2秒前
田様应助害羞外套采纳,获得10
4秒前
5秒前
zlx完成签到,获得积分10
5秒前
ll发布了新的文献求助10
6秒前
乐乐应助略略略采纳,获得10
7秒前
7秒前
7秒前
7秒前
aaa11完成签到,获得积分20
7秒前
浮游应助风中老三采纳,获得10
8秒前
Li完成签到,获得积分0
8秒前
jucy发布了新的文献求助150
9秒前
妖妖灵完成签到,获得积分10
10秒前
10秒前
orixero应助hvgjgfjhgjh采纳,获得10
10秒前
10秒前
assdd发布了新的文献求助10
11秒前
思源应助清爽的如娆采纳,获得10
12秒前
jsji发布了新的文献求助30
12秒前
发炎的扁桃体完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
ling361完成签到,获得积分0
15秒前
黄立伟完成签到,获得积分10
16秒前
共享精神应助坦率的嫣娆采纳,获得10
17秒前
ZOE应助柚柚又采纳,获得30
17秒前
爱喝可乐发布了新的文献求助10
17秒前
17秒前
wpzzpw发布了新的文献求助20
18秒前
JOJO完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473830
求助须知:如何正确求助?哪些是违规求助? 4575894
关于积分的说明 14355235
捐赠科研通 4503558
什么是DOI,文献DOI怎么找? 2467664
邀请新用户注册赠送积分活动 1455473
关于科研通互助平台的介绍 1429531