荧蒽
苊
芘
蒽
四分位间距
菲
环境化学
化学
人口
肺功能
环境卫生
肺
医学
内科学
有机化学
作者
Minghua Ge,Lieyang Fan,Yun Zhou,Yuewei Liu,Jixuan Ma,Shijie Yang,Bin Wang,Lili Xiao,Zi Ye,Tingming Shi,Jing Yuan,Weihong Chen
标识
DOI:10.1016/j.scitotenv.2019.05.328
摘要
Fine particulate matter (PM2.5) exposure has been associated with lung function decline, but impact of PM2.5 constituents especially for polycyclic aromatic hydrocarbons (PAHs) on lung function is unclear among community population. We enrolled 224 Chinese participants who participated in two study periods (2014-2015 and 2017-2018) of the Wuhan-Zhuhai cohort as a panel, and quantified the associations of personal PM2.5 and sixteen PM2.5-bound PAHs with lung function levels as well as lung function change in three years by linear mixed models. Diagnostic ratios were calculated to identify potential sources of PM2.5-bound PAHs in Wuhan and Zhuhai separately. In single-constituent models, we found that each one interquartile-range increase of naphthalene, acenaphthene, fluoranthene and pyrene were associated with 26.82, 60.99, 45.25 and 23.37 mL decline in FVC respectively; while fluoranthene and pyrene were associated with 27.43 and 15.49 mL decline in FEV1 respectively. Similar results were observed in consitituent-PM2.5 joint models and single-constituent residual models. Persistently long-term high levels of three HMW-PAHs (benzo[a]anthracene, dibenzo[a,h]anthracene, and benzo[ghi]perylene) were associated with 214.65, 226.13, and 265.00 mL decline in FVC decline in three years, compared with persistently low exposure level groups. The associations were different between Wuhan and Zhuhai. The results of diagnostic ratios suggested the differences in PAH emissions between two cities. Our findings provide evidence that both short- and long-term PM2.5-bound PAH exposures might affect lung function.
科研通智能强力驱动
Strongly Powered by AbleSci AI