Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

半导体纳米结构 材料科学 光子学 半导体 外延 纳米结构 光电子学 纳米技术 分子束外延 量子点 量子阱 激光器 光学 物理 图层(电子)
作者
Massimo Gurioli,Zhiming Wang,Armando Rastelli,Takashi Kuroda,S. Sanguinetti
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:18 (8): 799-810 被引量:161
标识
DOI:10.1038/s41563-019-0355-y
摘要

The long dreamed ‘quantum internet’ would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or ‘artificial atoms’—namely, the Stranski–Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology. The droplet epitaxy technique has emerged as an alternative to the most commonly used Stranski–Krastanov for fabricating semiconductor nanostructures. This Review discusses the important aspects of droplet epitaxy quantum dots, from the growth mechanism to device application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rec发布了新的文献求助10
刚刚
zz发布了新的文献求助10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
Rec完成签到 ,获得积分10
5秒前
雷仪清完成签到 ,获得积分10
6秒前
6秒前
10秒前
Lucas应助zz采纳,获得10
12秒前
香蕉觅云应助孤独的帅着采纳,获得10
15秒前
笨笨芯应助燕子采纳,获得30
19秒前
21秒前
somous完成签到,获得积分10
22秒前
22秒前
24秒前
包容的剑完成签到 ,获得积分10
24秒前
26秒前
junyang发布了新的文献求助10
27秒前
kydd发布了新的文献求助10
28秒前
28秒前
失眠天亦应助Yue采纳,获得10
31秒前
kydd完成签到,获得积分10
31秒前
高思博发布了新的文献求助10
34秒前
38秒前
小林发布了新的文献求助10
41秒前
ASS完成签到,获得积分20
41秒前
www268完成签到 ,获得积分10
42秒前
无心的秋珊完成签到 ,获得积分10
43秒前
昔年完成签到 ,获得积分10
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751