Integration of metabolomic and transcriptomic profiles to identify biomarkers in serum of lung cancer

代谢组学 代谢途径 小桶 转录组 生物 折叠变化 嘌呤代谢 生物标志物 代谢组 新陈代谢 基因表达谱 癌症研究 生物标志物发现 医学 计算生物学 蛋白质组学 癌症 生物信息学 内科学 生物化学 基因 基因表达
作者
Quan Sun,Wei Zhao,Lei Wang,Fei Guo,Dongjian Song,Qian Zhang,Da Zhang,Yun Fan,Jiaxiang Wang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (7): 11981-11989 被引量:14
标识
DOI:10.1002/jcb.28482
摘要

We used blood serum samples collected from 31 lung cancer (LC) patients and 29 healthy volunteers in this study. Levels of serum metabolites were qualitative quantified with gas chromatography-mass spectrometry (GC-MS), and the data were analyzed by partial least-squares discrimination analysis (PLS-DA). Based on the Kyoto Encyclopedia of Genes and Genomes database, we performed pathway-based analysis utilizing metabolites presented at differential abundance between the LC serum samples and the normal healthy serum samples for systematical investigation on the metabolic alterations associated with LC pathogenesis. Finally, we analyzed the significantly enriched pathways as well as their relevant differentially expressed messenger RNAs, and drawn a correlation network plot to identify the serum metabolic biomarkers and the significantly altered metabolic pathways for LC. GC-MS analysis showed that 23 of the 169 metabolites identified were significantly different. PLS-DA model revealed that 13 of these metabolites were with variable importance > 1, and particularly five were with area under curve > 0.9. Pathway-based analysis demonstrated that five of eight enriched metabolic pathways were statistically significant with false discovery rate < 0.05. Lastly, the correlation networks between these pathways and their related genes suggested that 29 genes had correlation degree > 10, which were mainly engaged in the purine metabolism. In conclusion, we identified indole-3-lactate, erythritol, adenosine-5-phosphate, paracetamol and threitol as serum metabolic biomarkers for LC through metabolomics analysis. Besides, we identified the purine metabolism as the significantly altered metabolic pathway in LC with the help of transcriptomics analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZ01发布了新的文献求助10
1秒前
舒苏应助刘歌采纳,获得10
1秒前
1秒前
小满发布了新的文献求助10
1秒前
FashionBoy应助不发nothing采纳,获得10
1秒前
mayun95发布了新的文献求助10
2秒前
3秒前
传奇3应助夜染采纳,获得10
4秒前
blossom发布了新的文献求助10
4秒前
4秒前
齐天大帝完成签到,获得积分10
5秒前
ym发布了新的文献求助10
5秒前
大笨笨完成签到 ,获得积分10
5秒前
mmx发布了新的文献求助10
5秒前
无私的以冬完成签到,获得积分10
5秒前
晨曦完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
今天放假了吗完成签到,获得积分10
6秒前
7秒前
舟夏发布了新的文献求助10
8秒前
8秒前
cqr完成签到,获得积分10
8秒前
Ding-Ding完成签到,获得积分10
8秒前
执着的无心完成签到,获得积分10
8秒前
瓜瓜发布了新的文献求助10
10秒前
米虫发布了新的文献求助10
10秒前
www完成签到,获得积分10
10秒前
星辰大海应助liney采纳,获得10
10秒前
LLCHEN发布了新的文献求助10
11秒前
ddog完成签到,获得积分10
11秒前
King完成签到,获得积分10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
mirror应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758