Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression

计算机科学 背景(考古学) 克里金 贝叶斯概率 环境流行病学 普罗比特 机器学习 特征选择 数据挖掘 Probit模型 软件 核方法 支持向量机 人工智能 统计 数学 医学 环境卫生 生物 古生物学 程序设计语言
作者
Jennifer F. Bobb,Birgit Claus Henn,Linda Valeri,Brent A. Coull
出处
期刊:Environmental Health [Springer Nature]
卷期号:17 (1): 67-67 被引量:987
标识
DOI:10.1186/s12940-018-0413-y
摘要

Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
1秒前
Z126发布了新的文献求助30
1秒前
识衣发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
4秒前
Owen应助呼呼呼嘟嘟嘟采纳,获得100
4秒前
5秒前
郭睿关注了科研通微信公众号
5秒前
5秒前
5秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
BLUEEEE应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
嘿嘿发布了新的文献求助10
8秒前
8秒前
蜡笔小欣发布了新的文献求助30
8秒前
jiebai完成签到,获得积分10
9秒前
Annie给Annie的求助进行了留言
9秒前
尊敬的笑柳完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556401
求助须知:如何正确求助?哪些是违规求助? 4640903
关于积分的说明 14663795
捐赠科研通 4582989
什么是DOI,文献DOI怎么找? 2513798
邀请新用户注册赠送积分活动 1488319
关于科研通互助平台的介绍 1459064