亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D convolution neural networks for molecular subtype prediction in glioblastoma multiforme

胶质母细胞瘤 卷积(计算机科学) 计算机科学 人工神经网络 人工智能 癌症研究 医学
作者
Gagan Acharya,Nameeta Shah,Ganapathy Krishnamurthi,Mahendra Khened,Vikas Kumar Anand
标识
DOI:10.1117/12.2512417
摘要

Recent developments in deep learning techniques have gained significant attention in medical image analysis. Deep learning techniques have been shown to give promising results for automating various medical image tasks like segmentation of organs, precise delineation of lesions and automated disease diagnosis.We have demonstrated the utility of deep learning models for finding associations between brain imaging phenotypes and the molecular subtype. In this study Magnetic Resonance (MR) images of the brain with Glioblastoma multiforme (GBM) were used. The Cancer Genome Atlas (TCGA) has grouped GBM into four distinct subtypes, namely - Mesenchymal, Neural, Proneural and Classical. The subtype classification are defined by genomic characteristics, survival outcomes, patient age and response to treatment. Identification of molecular subtype and its associated imaging phenotype could aid in developing precision medicine and personalized treatments for patients.The MR imaging data and molecular subtype information were retrospectively obtained from The Cancer Imaging Archive (TCIA) of patients with high-grade gliomas. From the TCIA, 123 patient cases were manually identified which had the following four MR sequences- a) T1 and b) post-contrast T1-weighted (T1c), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (FLAIR). The MR dataset was further split into 92 and 31 cases for training and testing. The pre-processing of MR images involved skull-stripping, co-registration of MR sequences to T1c, re-sampling of MR volumes to isotropic voxels and segmentation of brain lesion. The lesions in the MR volumes were automatically segmented using a trained convolutional Neural Network (CNN) on BraTS2017 segmentation challenge dataset. From the segmentation maps 64×64×64 cube patches centered around the tumor were extracted from all the four MR sequences and a 3D convolutional neural network was trained for the molecular subtype classification. On the held-out test set, our approach achieved a classification accuracy of 90%. These results on TCIA dataset highlight the emerging role of deep learning in understanding molecular markers from non-invasive imaging phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得10
刚刚
YifanWang应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
1分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
1分钟前
友好的白柏完成签到 ,获得积分10
1分钟前
李健的小迷弟应助Sandy采纳,获得10
1分钟前
人谷完成签到 ,获得积分10
1分钟前
人谷呀完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
华仔应助羽生结弦的馨馨采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
qqq完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
早睡一哥完成签到,获得积分10
4分钟前
002完成签到,获得积分10
4分钟前
包容的剑完成签到 ,获得积分10
5分钟前
5分钟前
003完成签到,获得积分10
5分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
5分钟前
Sandy发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Sandy完成签到,获得积分10
5分钟前
传奇3应助天空之城采纳,获得10
5分钟前
5分钟前
5分钟前
天空之城发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229