Prediction and Localization of Student Engagement in the Wild

计算机科学 脱离理论 任务(项目管理) 人工智能 凝视 机器学习 学生参与度 支持向量机 深度学习 监督学习 人机交互 人工神经网络 数学教育 心理学 老年学 医学 经济 管理
作者
Amanjot Kaur,Aamir Mustafa,Love Mehta,Abhinav Dhall
标识
DOI:10.1109/dicta.2018.8615851
摘要

Digital revolution has transformed the traditional teaching procedures, students are going online to access study materials. It is realised that analysis of student engagement in an e-learning environment would facilitate effective task accomplishment and learning. Well known social cues of engagement/disengagement can be inferred from facial expressions, body movements and gaze patterns. In this paper, student's response to various stimuli (educational videos) are recorded and cues are extracted to estimate variations in engagement level. We study the association of a subject's behavioral cues with his/her engagement level, as annotated by labelers. We have localized engaging/non-engaging parts in the stimuli videos using a deep multiple instance learning based framework, which can give useful insight into designing Massive Open Online Courses (MOOCs) video material. Recognizing the lack of any publicly available dataset in the domain of user engagement, a new ‘in the wild’ dataset is curated. The dataset: Engagement in the Wild contains 264 videos captured from 91 subjects, which is approximately 16.5 hours of recording. Detailed baseline results using different classifiers ranging from traditional machine learning to deep learning based approaches are evaluated on the database. Subject independent analysis is performed and the task of engagement prediction is modeled as a weakly supervised learning problem. The dataset is manually annotated by different labelers and the correlation studies between annotated and predicted labels of videos by different classifiers are reported. This dataset creation is an effort to facilitate research in various e-learning environments such as intelligent tutoring systems, MOOCs, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianhan发布了新的文献求助10
刚刚
tcjia发布了新的文献求助10
刚刚
科研通AI6应助沉默丹亦采纳,获得10
刚刚
内向靖巧发布了新的文献求助10
1秒前
忆枫发布了新的文献求助10
1秒前
3秒前
TinTin完成签到,获得积分10
4秒前
传奇3应助tanx采纳,获得10
4秒前
LDDD发布了新的文献求助10
4秒前
可可奇完成签到 ,获得积分10
4秒前
自信念柏完成签到,获得积分10
5秒前
善学以致用应助席成风采纳,获得10
5秒前
星辰大海应助纯真凡旋采纳,获得10
5秒前
5秒前
yoyo完成签到 ,获得积分10
6秒前
6秒前
小宝妈完成签到,获得积分10
7秒前
lilylucky发布了新的文献求助10
7秒前
周小丁完成签到 ,获得积分10
7秒前
李健的小迷弟应助忆枫采纳,获得10
7秒前
8秒前
yesmider完成签到,获得积分10
8秒前
传奇3应助諵十一采纳,获得10
8秒前
乐观的颦发布了新的文献求助10
9秒前
花火妖妖完成签到,获得积分10
9秒前
深霖阳光完成签到,获得积分10
9秒前
Rainbow0224完成签到,获得积分10
10秒前
科研通AI6应助Cookie采纳,获得10
10秒前
包容的唯雪关注了科研通微信公众号
10秒前
10秒前
简单的晓灵完成签到,获得积分20
10秒前
11秒前
小蘑菇应助微微采纳,获得10
11秒前
调皮从筠发布了新的文献求助10
11秒前
jianguo完成签到,获得积分10
11秒前
orixero应助tcjia采纳,获得10
12秒前
丰富的慕卉完成签到,获得积分10
12秒前
Akim应助wuwu采纳,获得10
12秒前
zhenyu0430发布了新的文献求助10
12秒前
充电宝应助Nn采纳,获得10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5447056
求助须知:如何正确求助?哪些是违规求助? 4556113
关于积分的说明 14254673
捐赠科研通 4478514
什么是DOI,文献DOI怎么找? 2453664
邀请新用户注册赠送积分活动 1444469
关于科研通互助平台的介绍 1420508