Label Propagation Ensemble for Hyperspectral Image Classification

高光谱成像 像素 模式识别(心理学) 人工智能 计算机科学 线性子空间 子空间拓扑 随机子空间法 维数之咒 图形 支持向量机 集成学习 机器学习 数学 理论计算机科学 几何学
作者
Youqiang Zhang,Guo Cao,Ayesha Shafique,Peng Fu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (9): 3623-3636 被引量:22
标识
DOI:10.1109/jstars.2019.2926123
摘要

The imbalance between limited labeled pixels and high dimensionality of hyperspectral data can easily give rise to Hughes phenomenon. Semisupervised learning (SSL) methods provide promising solutions to address the aforementioned issue. Graph-based SSL algorithms, also called label propagation methods, have obtained increasing attention in hyperspectral image (HSI) classification. However, the graphs constructed by utilizing the geometrical structure similarity of samples are unreliable due to the high dimensionality and complexity of the HSIs, especially for the case of very limited labeled pixels. Our motivation is to construct label propagation ensemble (LPE) model, then use the decision fusion of multiple label propagations to obtain pseudolabeled pixels with high classification confidence. In LPE, random subspace method is introduced to partition the feature space into multiple subspaces, then several label propagation models are constructed on corresponding subspaces, finally the results of different label propagation models are fused at decision level, and only the unlabeled pixels whose label propagation results are the same will be assigned with pseudolabels. Meanwhile extreme learning machine classifiers are trained on the labeled and pseudolabeled samples during the iteration. Compared with traditional label propagation methods, our proposed method can deal with the situation of very limited labeled samples by providing pseudolabeled pixels with high classification confidence, consequently, the accurate base classifiers are obtained. To demonstrate the effectiveness of the proposed method, LPE is compared with several state-of-the-art methods on four hyperspectral datasets. In addition, the method that only use label propagation is investigated to show the importance of ensemble technique in LPE. The experimental results demonstrate that the proposed method can provide competitive solution for HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老北京完成签到,获得积分10
1秒前
工藤新一发布了新的文献求助10
6秒前
HEAUBOOK应助Unique采纳,获得10
6秒前
7秒前
8秒前
干净雅旋完成签到,获得积分10
11秒前
空空发布了新的文献求助10
11秒前
orixero应助善良青筠采纳,获得10
12秒前
galvin发布了新的文献求助10
12秒前
负责的莫茗完成签到 ,获得积分10
12秒前
13秒前
椋鸟应助干净雅旋采纳,获得10
17秒前
123发布了新的文献求助10
18秒前
18秒前
英俊的铭应助Menand采纳,获得10
19秒前
ksl完成签到,获得积分10
19秒前
高兴的半芹完成签到,获得积分10
20秒前
jiapei_1019完成签到,获得积分20
22秒前
阿尼完成签到,获得积分10
24秒前
yimeng发布了新的文献求助10
24秒前
小小完成签到,获得积分10
26秒前
深情安青应助123采纳,获得10
26秒前
sun完成签到,获得积分10
27秒前
ChenkLuo完成签到,获得积分10
27秒前
小于完成签到,获得积分10
29秒前
shimfey完成签到 ,获得积分10
29秒前
30秒前
张慧杰完成签到,获得积分10
31秒前
画龙完成签到,获得积分10
31秒前
工藤新一完成签到,获得积分10
32秒前
kirazou完成签到,获得积分10
33秒前
晓军发布了新的文献求助10
34秒前
35秒前
baihanjunluo完成签到,获得积分10
35秒前
xiaoyiyaxin完成签到 ,获得积分10
37秒前
cy完成签到,获得积分10
37秒前
39秒前
40秒前
ylky发布了新的文献求助10
42秒前
晓军完成签到,获得积分10
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225