摘要
Communications on Pure and Applied MathematicsVolume 73, Issue 7 p. 1406-1452 Research ArticleOpen Access The Gauss Image Problem Károly J. Böröczky, Corresponding Author Károly J. Böröczky carlos@renyi.hu Central European University and, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest, Reáltanodau, 13-15 HungaryEmail: carlos@renyi.huSearch for more papers by this authorErwin Lutwak, Erwin Lutwak erwin@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorDeane Yang, Deane Yang deane.yang@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorGaoyong Zhang, Gaoyong Zhang gaoyong.zhang@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorYiming Zhao, Yiming Zhao yimingzh@mit.edu Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA, 02139 USASearch for more papers by this author Károly J. Böröczky, Corresponding Author Károly J. Böröczky carlos@renyi.hu Central European University and, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest, Reáltanodau, 13-15 HungaryEmail: carlos@renyi.huSearch for more papers by this authorErwin Lutwak, Erwin Lutwak erwin@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorDeane Yang, Deane Yang deane.yang@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorGaoyong Zhang, Gaoyong Zhang gaoyong.zhang@courant.nyu.edu Courant Institute, 251 Mercer St, New York, NY, 10012 USASearch for more papers by this authorYiming Zhao, Yiming Zhao yimingzh@mit.edu Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA, 02139 USASearch for more papers by this author First published: 06 May 2020 https://doi.org/10.1002/cpa.21898Citations: 11AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Bibliography 1Aleksandrov, A. D. On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sbornik N.S. 3 (1938), 27–46. 2Aleksandrov, A. Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 131–134. 3Alesker, S. Continuous rotation invariant valuations on convex sets. Ann. of Math. (2) 149 (1999), no. 3, 977–1005. doi: 10.2307/121078 4Alesker, S. The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14 (2004), no. 1, 1– 26. doi: https://doi.org/10.1007/s00039-004-0450-2 5Alesker, S.; Bernig, A.; Schuster, F. E. Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21 (2011), no. 4, 751– 773. doi: https://doi.org/10.1007/s00039-011-0125-8 6Andrews, B. Contraction of convex hypersurfaces by their affine normal. J. Differential Geom. 43 (1996), no. 2, 207– 230. 7Andrews, B. Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138 (1999), no. 1, 151– 161. doi: https://doi.org/10.1007/s002220050344 8Andrews, B. Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16 (2003), no. 2, 443– 459. doi: https://doi.org/10.1090/S0894-0347-02-00415-0 9Barthe, F.; Guédon, O.; Mendelson, S.; Naor, A. A probabilistic approach to the geometry of the -ball. Ann. Probab. 33 (2005), no. 2, 480–513. doi: 10.1214/009117904000000874 10Bertrand, J. Prescription of Gauss curvature using optimal mass transport. Geom. Dedicata 183 (2016), 81– 99. doi: https://doi.org/10.1007/s10711-016-0147-3 11Besau, F.; Werner, E. M. The floating body in real space forms. J. Differential Geom. 110 (2018), no. 2, 187– 220. doi: https://doi.org/10.4310/jdg/1538791243 12Böröczky, K. J.; Henk, M. Cone-volume measure of general centered convex bodies. Adv. Math. 286 (2016), 703– 721. doi: https://doi.org/10.1016/j.aim.2015.09.021 13Böröczky, K. J.; Henk, M. Cone-volume measure and stability. Adv. Math. 306 (2017), 24– 50. doi: https://doi.org/10.1016/j.aim.2016.10.005 14Böröczky, K. J.; Henk, M.; Pollehn, H. Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differential Geom. 109 (2018), no. 3, 411– 429. doi: https://doi.org/10.4310/jdg/1531188189 15Böröczky, K. J.; Ludwig, M. Minkowski valuations on lattice polytopes. J. Eur. Math. Soc. (JEMS) 21 (2019), no. 1, 163– 197. doi: https://doi.org/10.4171/JEMS/833 16Böröczky, K. J.; Lutwak, E.; Yang, D.; Zhang, G. The logarithmic Minkowski problem. J. Amer. Math. Soc. 26 (2013), no. 3, 831– 852. doi: https://doi.org/10.1090/S0894-0347-2012-00741-3 17Cheng, S.-Y.; Yau, S.-T. On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29 (1976), no. 5, 495– 516. doi: https://doi.org/10.1002/cpa.3160290504 18Chou, K.-S.; Wang, X.-J. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205 (2006), no. 1, 33–83. doi: 10.1016/j.aim.2005.07.004 19Gardner, R. J. A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math. (2) 140 (1994), no. 2, 435–447. doi: 10.2307/2118606 20Gardner, R.J. Geometric tomography. Second edition. Encyclopedia of and Its Applications, 58. Cambridge University Press, New York, 2006. doi: 10.1017/CBO9781107341029 21Gardner, R.J.; Koldobsky, A.; Schlumprecht, T. An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. of Math. (2) 149 (1999), no. 2, 691–703. doi: 10.2307/120978 22Gruber, P. M. Convex and discrete geometry. Grundlehren der mathematischen Wissenschaften, 336. Springer, Berlin, 2007. 23Haberl, C. Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1565– 1597. doi: https://doi.org/10.4171/JEMS/341 24Haberl, C.; Parapatits, L. The centro-affine Hadwiger theorem. J. Amer. Math. Soc 27 (2014), no. 3, 685– 705. doi: https://doi.org/10.1090/S0894-0347-2014-00781-5 25Henk, M.; Linke, E. Cone-volume measures of polytopes. Adv. Math. 253 (2014), 50– 62. doi: https://doi.org/10.1016/j.aim.2013.11.015 26Henk, M.; Pollehn, H. Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323 (2018), 114– 141. doi: https://doi.org/10.1016/j.aim.2017.10.037 27Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216 (2016), no. 2, 325– 388. doi: https://doi.org/10.1007/s11511-016-0140-6 28Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G. The Lp-Alexsandrov problem for Lp-integral curvature. J. Differential Geom. 110 (2018), no. 1, 1–29. doi: 10.4310/jdg/1536285625 29Huang, Y.; Zhao, Y. On the Lp dual Minkowski problem. Adv. Math. 332 (2018), 57–84. doi: 10.1016/j.aim.2018.05.002 30Kalton, N. Quasi-Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2, 1099–1130. North-Holland, Amsterdam, 2003. doi: 10.1016/S1874-5849(03)80032-3 31Koldobsky, A. Intersection bodies, positive definite distributions, and the Busemann-Petty problem. Amer. J. Math. 120 (1998), no. 4, 827– 840. 32Koldobsky, A. A functional analytic approach to intersection bodies. Geom. Funct. Anal. 10 (2000), no. 6, 1507– 1526. doi: https://doi.org/10.1007/PL00001659 33Ludwig, M. Ellipsoids and matrix-valued valuations. Duke Math. J. 119 (2003), no. 1, 159– 188. doi: https://doi.org/10.1215/S0012-7094-03-11915-8 34Ludwig, M. Intersection bodies and valuations. Amer. J. Math. 128 (2006), no. 6, 1409– 1428. 35Ludwig, M. Minkowski areas and valuations. J. Differential Geom. 86 (2010), no. 1, 133– 161. 36Ludwig, M.; Reitzner, M. A classification of SL(n) invariant valuations. Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. doi: 10.4007/annals.2010.172.1223 37Lutwak, E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38 (1993), no. 1, 131– 150. 38Lutwak, E.; Oliker, V. On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41 (1995), no. 1, 227– 246. 39Lutwak, E.; Yang, D.; Zhang, G. Lp affine isoperimetric inequalities. J. Differential Geom. 56 (2000), no. 1, 111–132. 40Lutwak, E.; Yang, D.; Zhang, G. On the Lp-Minkowski problem. Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. doi: 10.1090/S0002-9947-03-03403-2 41Lutwak, E.; Yang, D.; Zhang, G. Optimal Sobolev norms and the Lp Minkowski problem. Int. Math. Res. Not. 2006 (2006), Art. ID 62987, 21 pp. doi: 10.1155/IMRN/2006/62987 42Lutwak, E.; Yang, D.; Zhang, G. Lp dual curvature measures. Adv. Math. 329 (2018), 85–132. doi: 10.1016/j.aim.2018.02.011 43Naor, A. The surface measure and cone measure on the sphere of . Trans. Amer. Math. Soc. 359 (2007), no. 3, 1045–1079. doi: 10.1090/S0002-9947-06-03939-0 44Naor, A.; Romik, D. Projecting the surface measure of the sphere of . Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 2, 241–261. doi: 10.1016/S0246-0203(02)00008-0 45Oliker, V. Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature. Seminari dell’ Istituto di Mathematica Applicata “Giovanni Sansone", Universitá degli Studi di Firenze (1983), 1–39. 46Oliker, V. I. Hypersurfaces in ℝn + 1 with prescribed Gaussian curvature and related equations of Monge-Ampère type. Comm. Partial Differential Equations 9 (1984), no. 8, 807–838. doi: 10.1080/03605308408820348 47Oliker, V. Embedding Sn into Rn + 1 with given integral Gauss curvature and optimal mass transport on Sn. Adv. Math. 213 (2007), no. 2, 600–620. doi: 10.1016/j.aim.2007.01.005 48Santaló, L. A. Integral geometry and geometric probability. Encyclopedia of Mathematics and Its Applications, Vol. 1. Addison-Wesley, Reading, Mass.-London-Amsterdam, 1976. 49Schneider, R. Convex bodies: the Brunn-Minkowski theory. Second expanded edition. Encyclopedia of Mathematics and Its Applications, 151. Cambridge University Press, Cambridge, 2014. 50Schuster, F. E. Crofton measures and Minkowski valuations. Duke Math. J. 154 (2010), no. 1, 1– 30. doi: https://doi.org/10.1215/00127094-2010-033 51Schuster, F. E.; Wannerer, T. Even Minkowski valuations. Amer. J. Math. 137 (2015), no. 6, 1651– 1683. doi: https://doi.org/10.1353/ajm.2015.0041 52Schuster, F.; Wannerer, T. Minkowski valuations and generalized valuations. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 8, 1851– 1884. doi: https://doi.org/10.4171/JEMS/801 53Schütt, C.; Werner, E. Surface bodies and p-affine surface area. Adv. Math. 187 (2004), no. 1, 98– 145. doi: https://doi.org/10.1016/j.aim.2003.07.018 54Stancu, A. The discrete planar L0-Minkowski problem. Adv. Math. 167 (2002), no. 1, 160–174. doi: 10.1006/aima.2001.2040 55Zhang, G. A positive solution to the Busemann-Petty problem in ℝ4. Ann. of Math. (2) 149 (1999), no. 2, 535–543. doi: 10.2307/120974 56Zhao, Y. The dual Minkowski problem for negative indices. Calc. Var. Partial Differential Equations 56 (2017), no. 2, Art. 18, 16 pp. doi: 10.1007/s00526-017-1124-x 57Zhao, Y. Existence of solutions to the even dual Minkowski problem. J. Differential Geom. 110 (2018), no. 3, 543– 572. doi: https://doi.org/10.4310/jdg/1542423629 58Zhu, G. The logarithmic Minkowski problem for polytopes. Adv. Math. 262 (2014), 909– 931. doi: https://doi.org/10.1016/j.aim.2014.06.004 59Zhu, G. The centro-affine Minkowski problem for polytopes. J. Differential Geom. 101 (2015), no. 1, 159– 174. Citing Literature Volume73, Issue7July, 2020Pages 1406-1452 ReferencesRelatedInformation