等离子体子
量子隧道
材料科学
光电子学
带隙
吸收(声学)
电子
拉曼散射
散射
天线(收音机)
蓝移
拉曼光谱
光学
物理
光致发光
电信
量子力学
计算机科学
复合材料
作者
Cynthia M. Gruber,Lars O. Herrmann,Edson P. Bellido,Janine Dössegger,Antonis Olziersky,Ute Drechsler,Gabriel Puebla‐Hellmann,Gianluigi A. Botton,Lukáš Novotný,Emanuel Lörtscher
出处
期刊:Nano Letters
[American Chemical Society]
日期:2020-05-05
卷期号:20 (6): 4346-4353
被引量:12
标识
DOI:10.1021/acs.nanolett.0c01072
摘要
Enhanced electromagnetic fields in nanometer gaps of plasmonic structures increase the optical interaction with matter, including Raman scattering and optical absorption. Quantum electron tunneling across sub-1 nm gaps, however, lowers these effects again. Understanding these phenomena requires controlled variation of gap sizes. Mechanically actuated plasmonic antennas enable repeatable tuning of gap sizes from the weak-coupling over the quantum-electron-tunneling to the direct-electrical-contact regime. Gap sizes are controlled electrically via leads that only weakly disturb plasmonic modes. Conductance signals show a near-continuous transition from electron tunneling to metallic contact. As the antenna's absorption cross-section is reduced, thermal expansion effects are negligible, in contrast to conventional break-junctions. Optical scattering spectra reveal first continuous red shifts for decreasing gap sizes and then blue shifts below gaps of 0.3 nm. The approach provides pathways to study opto- and electromolecular processes at the limit of plasmonic sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI