厌氧氨氧化菌
氮气
化学
佳能
自养
亚硝酸盐
环境化学
反硝化
细菌
环境工程
制浆造纸工业
生态学
环境科学
生物
有机化学
硝酸盐
反硝化细菌
艺术
工程类
文学类
遗传学
作者
Hao Qian,Yongchao Wang,Feng Sun,Wei Wu,Leyi Chen,Suqing Li,Zhen Wang
出处
期刊:PubMed
日期:2020-05-01
卷期号:31 (5): 1715-1724
被引量:1
标识
DOI:10.13287/j.1001-9332.202005.034
摘要
We investigated the effects of seasonal temperature variation on the treatment perfor-mance and underlying mechanisms of nitrogen transformation in a tidal flow constructed wetland (TFCW) with the complete autotrophic nitrogen removal over nitrite (CANON) process. Different temperatures resulted in periodical variations in nitrogen transformation pathways and removal performance of the TFCW with CANON process, which was mainly due to the changes of dominant bacterial communities for nitrogen removal in the system. When temperature was higher than 20.0 ℃, nitrogen transformation and associated microbial characteristics in the TFCW were significantly affected, and the CANON process remained to be the principal pathway for nitrogen removal. The abundance and activity of anammox bacteria experienced different degrees of reduction when temperature dropped below 20.0 ℃. At the temperature of 9.3-20.0 ℃, the proliferation and increased activities of nitrite oxidizing bacteria (NOB) made the nitrification/denitrification process instead of the CANON process became the primary total nitrogen (TN) removal route in the TFCW, and the TN removal efficiency of the system declined to 34.8%±13.0%. Under the temperature range of 2.2-9.0 ℃, anammox bacteria, which was inhibited at the low temperatures, presented competitive advantage in comparison with NOB and denitrifiers, resulting that nitrogen removal in the TFCW relied on the CANON process again. Correspondingly, nitrogen removal rate of the system was 54.8%±4.8%. This study was conductive to the optimization of the TFCW with CANON process, as well as its engineering application.探究了温度的季节性变化对基于亚硝化的全程自养脱氮(CANON)型潮汐流人工湿地(TFCW)脱氮性能及其微生物特性的影响。CANON型TFCW中的脱氮微生物群落在温度的季节性变化下会发生不同程度的改变,其脱氮途径及性能随之会出现周期性的波动。填料层温度在20.0 ℃以上时对TFCW脱氮性能及其中的优势脱氮菌群无显著影响,CANON作用是系统脱氮的主要途径。当填料层温度低于20.0 ℃时,厌氧氨氧化菌丰度与活性显著降低,在9.3~20.0 ℃时,亚硝酸盐氧化菌(NOB)的增殖及其活性的提高使TFCW中脱氮的主要途径由CANON作用演替为硝化/反硝化作用,系统对总氮(TN)的去除率仅为(34.8±13.0)%;在2.2~9.0 ℃时,TFCW中的厌氧氨氧化菌在受到抑制的同时仍保持着对NOB和反硝化菌群的相对竞争优势,系统脱氮重新依赖于CANON作用,其对TN的去除率为(54.8±4.8)%。该研究可为CANON型TFCW工艺的优化及工程化应用提供参考。.
科研通智能强力驱动
Strongly Powered by AbleSci AI