Deep Learning in Relay Protection of Digital Power Industry

绊倒 继电器 数字保护继电器 保护继电器 计算机科学 电力系统保护 电力系统 过程(计算) 班级(哲学) 模式(计算机接口) 任务(项目管理) 功率(物理) 人工智能 电气工程 工程类 断路器 系统工程 物理 量子力学 操作系统
作者
Daria Stepanova,V. A. Naumov,V. I. Antonov
标识
DOI:10.1109/rpa47751.2019.8958378
摘要

Although modern relay protection exhibits all properties of an intelligent system, it has not yet fully acquired abilities to learn, adapt and recognize the modes of the protected electrical network. To give it these advantages, it is necessary to solve the central problem which is to distinguish the areas controlled by the protection of the electrical network modes parameters. In relay protection all modes of network are divided into watched and alternative. In the first mode, the protection should be tripped, and in the second - the tripping is strictly prohibited. The problem of ensuring selectivity of protection can be considered at the rate of process as the establishment of belonging of the arriving data of an electrical network mode to a certain class in space of controlled parameters, i.e. having determined them to a class of the watched or alternative modes. Traditional methods of relay protection learning are based on the application of the characteristics of operation differentiating the watched and alternative modes, thereby revealing some similarities with elements of the theory of artificial intelligence. At the same time the problem of finding acceptable operation border is solved with grace by methods of machine learning. Despite external similarity of schemes of algorithms, their main difference consists in a way of a task of characteristic of operation of protection. In traditional relay protection characteristic of operation is stored in the permanent memory, and in the protection with artificial intelligence - in the rewritable memory and is a part of neurons. The paper presents a solution to the problem of differentiation of the electrical network modes on the basis of deep learning, considering the problem of formation of the tripping areas, for example, resistance relays as a definition of belonging to the relay measurements to certain classes in the space of controlled parameters. Algorithms of machine learning have universality, efficiency and allow approaching scrupulously the choice of characteristics of operation, using all the arsenal of intelligent classifier. As a result, intellectual relay protection gains ability to differentiate difficult untied areas of precedents (the modes of an electrical network) containing enclaves of the alternative modes. Besides, intellectual relay protection has a possibility to correct characteristic of operation in the conditions of its operation by training of neural network at new precedents. However, for this purpose the operational personnel have to give signs to new data, turning them into precedents. Thus, intellectual relay protection has ability to adapt to changes of an electrical network. The paper covers mathematical foundations of the precedents sets separation of different modes of the electrical network on the example of the intelligent resistance relay using a support vector machine method. The advantage of the method consists in using the uniform principles to classify the modes of an electrical network both in case of linear, and in case of nonlinear separation of precedents. At the same time the solution of the linear separability problem is considered as a solution of the quadratic programming problem in the traditions of the theorem of Karush-Kuhn-Tucker. If it is impossible to recognize the parameters of a mode by a linear classifier, a nonlinear classifier is used, applying the mapping of the initial case space using special kernels to a higher-dimensional straightening space where the set of the modes becomes again linearly separable. Possibilities of application of a support vector machine method to solve the problem of classification and deep learning of relay protection are shown. On the example of an intelligent resistance relay, the mechanism of the tripping characteristic adaptation to changes in network parameters is illustrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaozheng完成签到,获得积分10
1秒前
鸣笛应助wh222222采纳,获得10
3秒前
noflatterer完成签到,获得积分10
3秒前
3秒前
等风来完成签到,获得积分10
3秒前
陈晓迪1992完成签到,获得积分10
3秒前
舒心的寻琴完成签到,获得积分10
4秒前
yuyan完成签到,获得积分10
5秒前
CNAxiaozhu7完成签到,获得积分10
6秒前
angelinazh发布了新的文献求助10
7秒前
未闻花名完成签到,获得积分10
7秒前
丘比特应助橙果果采纳,获得10
10秒前
aaa发布了新的文献求助10
10秒前
10秒前
空白完成签到 ,获得积分10
14秒前
饱满语风发布了新的文献求助30
14秒前
16秒前
良言完成签到 ,获得积分10
16秒前
angelinazh完成签到,获得积分10
17秒前
eason完成签到 ,获得积分10
19秒前
lmr完成签到,获得积分10
20秒前
aaa关闭了aaa文献求助
21秒前
飘逸河马发布了新的文献求助10
21秒前
22秒前
鸣笛应助oi采纳,获得10
22秒前
hunajx完成签到,获得积分10
23秒前
满城烟沙完成签到 ,获得积分0
24秒前
p454q完成签到,获得积分10
25秒前
弃梦完成签到,获得积分10
25秒前
dique3hao完成签到 ,获得积分10
25秒前
橙果果发布了新的文献求助10
26秒前
wllom完成签到,获得积分20
26秒前
Ulrica完成签到,获得积分10
26秒前
26秒前
Akim应助欧欧欧导采纳,获得10
27秒前
木直发布了新的文献求助10
28秒前
欣欣完成签到,获得积分10
29秒前
wllom发布了新的文献求助10
31秒前
SciGPT应助naiyantang采纳,获得10
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900216
求助须知:如何正确求助?哪些是违规求助? 3444962
关于积分的说明 10837487
捐赠科研通 3170120
什么是DOI,文献DOI怎么找? 1751495
邀请新用户注册赠送积分活动 846722
科研通“疑难数据库(出版商)”最低求助积分说明 789363