An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection

符号 边界(拓扑) 人口 选择(遗传算法) 趋同(经济学) 数学优化 进化算法 集合(抽象数据类型) 数学 帕累托原理 计算机科学 算法 人工智能 算术 程序设计语言 经济增长 经济 人口学 数学分析 社会学
作者
Zhengping Liang,Tingting Luo,Kaifeng Hu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 4553-4566 被引量:79
标识
DOI:10.1109/tcyb.2019.2960302
摘要

Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宇神完成签到,获得积分10
刚刚
软嘴唇完成签到,获得积分10
刚刚
程cc完成签到 ,获得积分10
刚刚
刚刚
好单纯完成签到,获得积分10
1秒前
1秒前
Everglow完成签到,获得积分10
1秒前
朱先生发布了新的文献求助10
1秒前
1秒前
ASSA完成签到,获得积分10
1秒前
WK发布了新的文献求助10
2秒前
lance发布了新的文献求助10
2秒前
王月完成签到,获得积分10
2秒前
Lucyxinyue完成签到,获得积分10
2秒前
2秒前
2秒前
chen完成签到,获得积分10
2秒前
小王同学完成签到,获得积分10
2秒前
2秒前
一禅完成签到 ,获得积分10
3秒前
Wqhao完成签到,获得积分10
4秒前
4秒前
Hello应助chara采纳,获得10
4秒前
jin发布了新的文献求助10
5秒前
DaYongDan完成签到 ,获得积分10
5秒前
豆花完成签到,获得积分10
5秒前
pukej完成签到 ,获得积分10
5秒前
xianianrui完成签到 ,获得积分10
5秒前
LLL发布了新的文献求助10
5秒前
wanci应助李蔚然采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
ndndd发布了新的文献求助10
7秒前
张小美发布了新的文献求助10
7秒前
Asriel发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
lance完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471114
求助须知:如何正确求助?哪些是违规求助? 4573904
关于积分的说明 14341960
捐赠科研通 4501121
什么是DOI,文献DOI怎么找? 2466168
邀请新用户注册赠送积分活动 1454377
关于科研通互助平台的介绍 1428975