他克莫司
小RNA
生物信息学
表观遗传学
CYP3A5
生物
基因沉默
药物代谢
基因表达
移植
药理学
新陈代谢
基因
遗传学
生物化学
医学
内科学
基因型
作者
Xiangqian Gu,Dan Tang,Ping Wan,Tian Qin,Taihua Yang,Ji Wu,Hao Ji,Jinchuan Liu,Feng Xue,Yuanjia Tang,Qiang Xia
标识
DOI:10.1016/j.phrs.2020.105382
摘要
The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacrolimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacrolimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacrolimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4α, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacrolimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI