Study on Meta-Modeling Method for Performance Analysis of Digital Power Plant

组分(热力学) 发电站 计算机科学 可靠性工程 领域(数学) 建模与仿真 过程(计算) 语法 功率(物理) 数据挖掘 工业工程 模拟 工程类 人工智能 纯数学 物理 电气工程 操作系统 热力学 量子力学 数学
作者
Dengji Zhou,Tingting Wei,Shenglin Ma,Huisheng Zhang,Di Huang,Ping Jiang,Zhenhua Lü
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:142 (4) 被引量:1
标识
DOI:10.1115/1.4044765
摘要

Abstract Digital power plant is the theory and method to improve the operating quality of power plant by quantifying, analyzing, controlling, and deciding the physical and working objects of power plants in the whole life cycle. And the foundation of digital power plant is system modeling and performance analysis. However, there are some problems in the process of modeling establishment and performance analysis. For instance, each component has different dimensions and different types of mathematical description, and the data or information used for modeling are defined differently and belong to different enterprises, who do not want to share their information. Meta-modeling is a potential method to solve these problems. It defines the specification to describe different kinds of elements and the relationship between different elements. In this paper, the collaborative modeling and simulation platform for digital power plant has been established based on the meta-modeling method and the performance of the target power plant has been analyzed from different aspects via field data. The meta-modeling method consists of three parts: syntax definition, model development, and algorithm definition. In the comparative study between the meta-model and the traditional model, maximum average errors of the two methods are 8.72% and 4.74%, which reveals the high accuracy of the meta-modeling-based model. The result shows that the modeling and simulation platform for power plants can be used to reduce costs, decrease equipment failure rate, and improve plant output, so as to guarantee the safety and increase economics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃娃菜完成签到,获得积分10
刚刚
myyy完成签到 ,获得积分10
1秒前
皮皮虾完成签到 ,获得积分10
1秒前
bjglp完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
完美世界应助roaring采纳,获得10
4秒前
庆123发布了新的文献求助10
8秒前
CipherSage应助蔡继海采纳,获得10
9秒前
14秒前
赘婿应助PTDRA采纳,获得10
15秒前
Orange应助111采纳,获得10
15秒前
16秒前
17秒前
星黛露发布了新的文献求助10
18秒前
19秒前
19秒前
江河哈哈应助菜菜Cc采纳,获得10
20秒前
庆123完成签到,获得积分20
20秒前
20秒前
冰魂应助喜欢汪的猫采纳,获得30
20秒前
22秒前
蔡继海发布了新的文献求助10
22秒前
西瓜555发布了新的文献求助10
24秒前
25秒前
科研通AI2S应助星黛露采纳,获得10
25秒前
爆米花应助Kevin Huang采纳,获得10
27秒前
28秒前
隐形曼青应助cs采纳,获得10
33秒前
34秒前
35秒前
38秒前
桐桐应助小周采纳,获得10
40秒前
42秒前
斯文败类应助杆杆采纳,获得10
43秒前
CipherSage应助杆杆采纳,获得10
43秒前
43秒前
pinghu完成签到,获得积分10
45秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358