A dynamic stability design strategy for lithium metal solid state batteries

阳极 电解质 材料科学 阴极 锂(药物) 枝晶(数学) 电池(电) 功率密度 比能量 颗粒 渗透(战争) 金属 复合材料 化学工程 金属锂 化学 电极 冶金 功率(物理) 热力学 数学 医学 物理 几何学 工程类 物理化学 运筹学 内分泌学
作者
Luhan Ye,Xin Li
出处
期刊:Nature [Nature Portfolio]
卷期号:593 (7858): 218-222 被引量:553
标识
DOI:10.1038/s41586-021-03486-3
摘要

A solid-state electrolyte is expected to suppress lithium (Li) dendrite penetration with high mechanical strength1-4. However, in practice it still remains challenging to realise a lithium metal anode for batteries, because micrometre- or submicrometre-sized cracks in ceramic pellets can frequently be generated during battery assembly or long-time cycling3,5. Once cracks form, lithium dendrite penetration is inevitable6,7. Here we describe a solid-state battery design with a hierarchy of interface stabilities (to lithium metal responses), to achieve an ultrahigh current density with no lithium dendrite penetration. Our multilayer design has the structure of a less-stable electrolyte sandwiched between more-stable solid electrolytes, which prevents any lithium dendrite growth through well localized decompositions in the less stable electrolyte layer. A mechanism analogous to the expansion screw effect is proposed, whereby any cracks are filled by dynamically generated decompositions that are also well constrained, probably by the 'anchoring' effect the decompositions induce. The cycling performance of the lithium metal anode paired with a LiNi0.8Mn0.1Co0.1O2 cathode is very stable, with an 82 per cent capacity retention after 10,000 cycles at a 20C rate (8.6 milliamps per centimetre squared) and 81.3 per cent capacity retention after 2,000 cycles at a 1.5C rate (0.64 milliamps per centimetre squared). Our design also enables a specific power of 110.6 kilowatts per kilogram and specific energy up to 631.1 watt hours per kilogram at the micrometre-sized cathode material level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半柚发布了新的文献求助10
刚刚
深情安青应助小杨采纳,获得10
1秒前
王佳豪发布了新的文献求助10
1秒前
888发布了新的文献求助10
1秒前
1秒前
科研通AI5应助Nancy采纳,获得10
2秒前
2秒前
123321发布了新的文献求助10
3秒前
展七发布了新的文献求助10
3秒前
6秒前
豆⑧发布了新的文献求助10
6秒前
打打应助小高采纳,获得10
6秒前
启蒙发布了新的文献求助10
7秒前
10秒前
13秒前
13秒前
16秒前
18秒前
红黄蓝完成签到 ,获得积分10
22秒前
桐桐应助鱼子酱采纳,获得10
23秒前
Nancy发布了新的文献求助10
23秒前
豆⑧完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
传奇3应助风趣的平蓝采纳,获得10
26秒前
Becky完成签到 ,获得积分10
27秒前
安安发布了新的文献求助10
28秒前
28秒前
29秒前
霍师傅发布了新的文献求助10
30秒前
31秒前
32秒前
小杨完成签到,获得积分10
32秒前
zxd发布了新的文献求助30
33秒前
小杨发布了新的文献求助10
34秒前
NexusExplorer应助丁莞采纳,获得10
35秒前
启蒙完成签到,获得积分10
36秒前
flyinglin发布了新的文献求助10
37秒前
Li完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366