Predicting Recurrent Care Seeking of Physical Therapy for Musculoskeletal Pain Conditions

医学 逻辑回归 物理疗法 多元分析 医疗保健 门诊护理 回顾性队列研究 回廊的 多元统计 内科学 数学 经济增长 统计 经济
作者
Steven Z. George,Anna Giczewska,Brooke Alhanti,Adam Lutz,Ellen Shanley,Charles A. Thigpen,Nrupen A. Bhavsar
出处
期刊:Pain Medicine [Oxford University Press]
卷期号:22 (8): 1837-1849 被引量:7
标识
DOI:10.1093/pm/pnab154
摘要

Abstract Objective Musculoskeletal pain conditions are a leading cause of pain and disability internationally and a common reason to seek health care. Accurate prediction of recurrence of health care seeking due to musculoskeletal conditions could allow for better tailoring of treatment. The aim of this project was to characterize patterns of recurrent physical therapy seeking for musculoskeletal pain conditions and to develop a preliminary prediction model to identify those at increased risk of recurrent care seeking. Design Retrospective cohort. Setting Ambulatory care. Subjects Patients (n = 578,461) seeking outpatient physical therapy (United States). Methods Potential predictor variables were extracted from the electronic medical record, and patients were placed into three different recurrent care categories. Logistic regression models were used to identify individual predictors of recurrent care seeking, and the least absolute shrinkage and selection operator (LASSO) was used to develop multivariate prediction models. Results The accuracy of models for different definitions of recurrent care ranged from 0.59 to 0.64 (c-statistic), and individual predictors were identified from multivariate models. Predictors of increased risk of recurrent care included receiving workers’ compensation and Medicare insurance, having comorbid arthritis, being postoperative at the time of the first episode, age range of 44–64 years, and reporting night sweats or night pain. Predictors of decreased risk of recurrent care included lumbar pain, chronic injury, neck pain, pregnancy, age range of 25–44 years, and smoking. Conclusion This analysis identified a preliminary predictive model for recurrence of care seeking of physical therapy, but model accuracy needs to improve to better guide clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陪你闯荡发布了新的文献求助20
刚刚
科研通AI5应助半夏采纳,获得10
1秒前
yirenli完成签到,获得积分10
1秒前
欢佳欢发布了新的文献求助10
1秒前
vvA11应助ZLY采纳,获得10
1秒前
kavins凯旋完成签到,获得积分10
2秒前
邓晓霞发布了新的文献求助10
4秒前
今天又来搬砖啦完成签到,获得积分10
5秒前
桐桐应助科研dog采纳,获得10
6秒前
搜集达人应助Zoe采纳,获得10
6秒前
天天快乐应助张江泽采纳,获得10
7秒前
刘振鲁完成签到,获得积分10
7秒前
liyiren完成签到,获得积分10
7秒前
怪僻完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
乌克丽丽完成签到 ,获得积分10
9秒前
熊熊面包完成签到,获得积分10
9秒前
10秒前
11秒前
852应助乐观小之采纳,获得10
12秒前
12秒前
14秒前
寒暄half发布了新的文献求助10
15秒前
15秒前
ruan发布了新的文献求助10
15秒前
15秒前
小小铱发布了新的文献求助10
16秒前
17秒前
18秒前
aaa完成签到,获得积分10
18秒前
木又权发布了新的文献求助10
20秒前
无误发布了新的文献求助10
21秒前
21秒前
李马克发布了新的文献求助10
21秒前
沐夏完成签到 ,获得积分10
23秒前
25秒前
25秒前
田一点发布了新的文献求助10
26秒前
无花果应助kavins凯旋采纳,获得10
28秒前
科研通AI5应助无误采纳,获得10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195789
求助须知:如何正确求助?哪些是违规求助? 3731417
关于积分的说明 11752035
捐赠科研通 3406085
什么是DOI,文献DOI怎么找? 1868790
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835577