Underground Pipeline Identification into a Non-Destructive Case Study Based on Ground-Penetrating Radar Imaging

探地雷达 地质学 无损检测 底土 雷达 遥感 软件 计算机科学 土壤科学 医学 电信 放射科 土壤水分 程序设计语言
作者
N Iftimie,Adriana Savin,Rozina Steigmann,G S Dobrescu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (17): 3494-3494 被引量:35
标识
DOI:10.3390/rs13173494
摘要

Ground-penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in nondestructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR has proven its ability to work in electromagnetic frequency range for subsoil investigations, and it is a risk-reduction strategy for surveying underground various targets and their identification and detection. This paper presents the results of a case study which exceeds the laboratory level being realized in the field in a real case where the scanning conditions are much more difficult using GPR signals for detecting and assessing underground drainage metallic pipes which cross an area with large buildings parallel to the riverbed. The two urban drainage pipes are detected based on GPR imaging. This provides an approximation of their location and depth which are convenient to find from the reconstructed profiles of both simulated and practical GPR signals. The processing of data recorded with GPR tools requires appropriate software for this type of measurement to detect between different reflections at multiple interfaces located at different depths below the surface. In addition to the radargrams recorded and processed with the software corresponding to a GPR device, the paper contains significant results obtained using techniques and algorithms of the processing and post-processing of the signals (background removal and migration) that gave us the opportunity to estimate the location, depth, and profile of pipes, placed into a concrete duct bank, under a structure with different layers, including pavement, with good accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小胡同学发布了新的文献求助10
2秒前
hyw发布了新的文献求助10
3秒前
阿瑜完成签到 ,获得积分10
3秒前
oue发布了新的文献求助10
3秒前
3秒前
yara完成签到 ,获得积分10
4秒前
大模型应助WNing采纳,获得10
4秒前
fuxixixi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
英俊的铭应助Echo采纳,获得20
6秒前
8秒前
lumos发布了新的文献求助10
8秒前
w学术完成签到 ,获得积分10
9秒前
milv5发布了新的文献求助10
9秒前
Snoopy发布了新的文献求助10
10秒前
赘婿应助ENG采纳,获得10
10秒前
科目三应助oue采纳,获得10
11秒前
11秒前
11秒前
Jiro完成签到,获得积分10
14秒前
无花果应助懒回顾采纳,获得10
14秒前
fuxixixi完成签到,获得积分10
14秒前
15秒前
lee发布了新的文献求助10
15秒前
匹诺曹发布了新的文献求助10
17秒前
长孙灵雁发布了新的文献求助10
18秒前
王来敏完成签到,获得积分10
20秒前
21秒前
lee完成签到,获得积分10
22秒前
22秒前
牛马完成签到,获得积分10
23秒前
灵灵完成签到 ,获得积分10
23秒前
ma发布了新的文献求助10
24秒前
24秒前
大模型应助empty采纳,获得10
24秒前
MOREMO完成签到,获得积分10
24秒前
喷火龙完成签到,获得积分10
24秒前
研友_VZG7GZ应助长孙灵雁采纳,获得10
26秒前
丘比特应助小蟹采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605988
求助须知:如何正确求助?哪些是违规求助? 4690446
关于积分的说明 14863762
捐赠科研通 4703200
什么是DOI,文献DOI怎么找? 2542382
邀请新用户注册赠送积分活动 1507911
关于科研通互助平台的介绍 1472161