支持向量机
联苯菊酯
荧光光谱法
杀虫剂
光谱学
计算机科学
生物系统
农药残留
环境科学
荧光
人工智能
光学
生物
物理
生态学
量子力学
作者
Rendong Ji,Yue Han,Xiaoyan Wang,Haiyi Bian,Jiangyu Xu,Zhezhen Jiang,Xiaotao Feng
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2021-11-02
卷期号:60 (33): 10383-10383
被引量:5
摘要
Pesticide residues enter a lake through the water cycle, causing harm to the water environment and human health. It is necessary to select highly sensitive fluorescence spectroscopy to detect pesticides (bifenthrin, prochloraz, and cyromazine), and a support vector machine (SVM) is used to analyze the concentration of pesticides. In addition, this paper adopts K-fold cross validation and a grid search to optimize the SVM algorithm. The performance evaluation index and running time prove the reliability of the results of this experiment. They show that fluorescence spectroscopy combined with SVM is efficient in predicting pesticide residue content.
科研通智能强力驱动
Strongly Powered by AbleSci AI