Auction design for cross-edge task offloading in heterogeneous mobile edge clouds

计算机科学 双重拍卖 云计算 反向拍卖 移动边缘计算 拍卖算法 分布式计算 拍卖理论 服务器 水准点(测量) 任务(项目管理) GSM演进的增强数据速率 共同价值拍卖 计算机网络 收入等值 微观经济学 操作系统 人工智能 经济 管理 地理 大地测量学
作者
Weifeng Lü,Wei Wu,Jia Xu,Pengcheng Zhao,Dejun Yang,Lijie Xu
出处
期刊:Computer Communications [Elsevier]
卷期号:181: 90-101 被引量:11
标识
DOI:10.1016/j.comcom.2021.09.035
摘要

Task offloading is a promising technology to exploit the available resources in edge cloud efficiently. Many incentive mechanisms for offloading systems have been proposed. However, most of existing works study the centralized incentive mechanisms under the assumption that all mobile edge infrastructures are operated by a central cloud. In this paper, we aim to design the auction-based truthful incentive mechanisms for heavily loaded task offloading system in heterogeneous MECs. We first study the homogeneous MEC situation and present a global auction executed in the central cloud as a benchmark. For the heterogeneous MEC situation, we model the system as a dual auction framework, which enables the heterogeneous MECs to perform cross-edge task offloading without the participation of central servers. Specifically, we design two dual auction models: secondary auction-based model, which enables the system to offload tasks from a large-scale region in a single auction, and double auction-based model, which is suitable for the time sensitive tasks. Then the auctions for these two dual auction models are proposed. Through rigorous theoretical analysis, we demonstrate that the proposed auctions achieve desirable properties of computational efficiency, individual rationality, budget balance, truthfulness, and guaranteed approximation. The simulation results show that the secondary auction and double auction can obtain 14.5% and 4.2% more social welfare than comparison algorithm on average, respectively. In addition, the double auction has great advantage in terms of computation efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
my完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
啦啦啦发布了新的文献求助10
1秒前
务实水池完成签到,获得积分10
3秒前
3秒前
3秒前
多情的苞络关注了科研通微信公众号
4秒前
青青儿发布了新的文献求助10
4秒前
5476完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
xkx101完成签到,获得积分10
8秒前
dihou111发布了新的文献求助10
8秒前
8秒前
烟花应助青青儿采纳,获得10
9秒前
kanahei完成签到,获得积分20
10秒前
10秒前
12秒前
凶狠的璎发布了新的文献求助20
12秒前
风中的怜阳完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
科研通AI6.1应助xkx101采纳,获得10
13秒前
13秒前
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
13秒前
深情安青应助三三四采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
一只小朋友完成签到,获得积分10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
浮游漂漂应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767292
求助须知:如何正确求助?哪些是违规求助? 5569266
关于积分的说明 15414929
捐赠科研通 4901240
什么是DOI,文献DOI怎么找? 2636981
邀请新用户注册赠送积分活动 1585127
关于科研通互助平台的介绍 1540330