“Un”Fair Machine Learning Algorithms

算法 计算机科学 机器学习 利润(经济学) 奇偶性(物理) 人工智能 立法 差别性影响 经济 法学 微观经济学 政治学 粒子物理学 物理 最高法院
作者
Runshan Fu,Manmohan Aseri,Param Vir Singh,Kannan Srinivasan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4173-4195 被引量:49
标识
DOI:10.1287/mnsc.2021.4065
摘要

Ensuring fairness in algorithmic decision making is a crucial policy issue. Current legislation ensures fairness by barring algorithm designers from using demographic information in their decision making. As a result, to be legally compliant, the algorithms need to ensure equal treatment. However, in many cases, ensuring equal treatment leads to disparate impact particularly when there are differences among groups based on demographic classes. In response, several “fair” machine learning (ML) algorithms that require impact parity (e.g., equal opportunity) at the cost of equal treatment have recently been proposed to adjust for the societal inequalities. Advocates of fair ML propose changing the law to allow the use of protected class-specific decision rules. We show that the proposed fair ML algorithms that require impact parity, while conceptually appealing, can make everyone worse off, including the very class they aim to protect. Compared with the current law, which requires treatment parity, the fair ML algorithms, which require impact parity, limit the benefits of a more accurate algorithm for a firm. As a result, profit maximizing firms could underinvest in learning, that is, improving the accuracy of their machine learning algorithms. We show that the investment in learning decreases when misclassification is costly, which is exactly the case when greater accuracy is otherwise desired. Our paper highlights the importance of considering strategic behavior of stake holders when developing and evaluating fair ML algorithms. Overall, our results indicate that fair ML algorithms that require impact parity, if turned into law, may not be able to deliver some of the anticipated benefits. This paper was accepted by Kartik Hosanagar, information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熹贵妃发布了新的文献求助10
刚刚
共享精神应助mengdewen采纳,获得10
刚刚
故意的鼠标完成签到,获得积分10
1秒前
常常完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
SharonDu完成签到 ,获得积分10
5秒前
6秒前
大兵发布了新的文献求助30
7秒前
8秒前
无妨完成签到,获得积分10
8秒前
周一完成签到,获得积分20
9秒前
丘比特应助马倩采纳,获得10
9秒前
9秒前
延胡索完成签到,获得积分10
10秒前
song发布了新的文献求助10
13秒前
HJJHJH发布了新的文献求助50
15秒前
微风完成签到 ,获得积分10
16秒前
燕子完成签到,获得积分10
17秒前
pcr163应助HJJHJH采纳,获得50
18秒前
19秒前
超级元以完成签到,获得积分10
23秒前
激动的水壶完成签到,获得积分10
23秒前
日出发布了新的文献求助10
25秒前
25秒前
CodeCraft应助祈凛采纳,获得10
26秒前
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
ED应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
qduxl应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
lalala应助科研通管家采纳,获得10
26秒前
Xy应助科研通管家采纳,获得30
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864745
求助须知:如何正确求助?哪些是违规求助? 3407218
关于积分的说明 10653029
捐赠科研通 3131203
什么是DOI,文献DOI怎么找? 1726890
邀请新用户注册赠送积分活动 832079
科研通“疑难数据库(出版商)”最低求助积分说明 780124