“Un”Fair Machine Learning Algorithms

算法 计算机科学 机器学习 利润(经济学) 奇偶性(物理) 人工智能 立法 差别性影响 经济 法学 微观经济学 政治学 粒子物理学 物理 最高法院
作者
Runshan Fu,Manmohan Aseri,Param Vir Singh,Kannan Srinivasan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4173-4195 被引量:51
标识
DOI:10.1287/mnsc.2021.4065
摘要

Ensuring fairness in algorithmic decision making is a crucial policy issue. Current legislation ensures fairness by barring algorithm designers from using demographic information in their decision making. As a result, to be legally compliant, the algorithms need to ensure equal treatment. However, in many cases, ensuring equal treatment leads to disparate impact particularly when there are differences among groups based on demographic classes. In response, several “fair” machine learning (ML) algorithms that require impact parity (e.g., equal opportunity) at the cost of equal treatment have recently been proposed to adjust for the societal inequalities. Advocates of fair ML propose changing the law to allow the use of protected class-specific decision rules. We show that the proposed fair ML algorithms that require impact parity, while conceptually appealing, can make everyone worse off, including the very class they aim to protect. Compared with the current law, which requires treatment parity, the fair ML algorithms, which require impact parity, limit the benefits of a more accurate algorithm for a firm. As a result, profit maximizing firms could underinvest in learning, that is, improving the accuracy of their machine learning algorithms. We show that the investment in learning decreases when misclassification is costly, which is exactly the case when greater accuracy is otherwise desired. Our paper highlights the importance of considering strategic behavior of stake holders when developing and evaluating fair ML algorithms. Overall, our results indicate that fair ML algorithms that require impact parity, if turned into law, may not be able to deliver some of the anticipated benefits. This paper was accepted by Kartik Hosanagar, information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Bowingyang采纳,获得10
3秒前
慕青应助Huang采纳,获得10
8秒前
zyzraylene完成签到,获得积分10
11秒前
12秒前
慕青应助zpbb采纳,获得10
12秒前
shelly7788完成签到 ,获得积分10
12秒前
14秒前
李健应助仁爱裘采纳,获得10
16秒前
18秒前
18秒前
声没香发布了新的文献求助10
19秒前
天抒发布了新的文献求助30
19秒前
19秒前
星辰大海应助优美的安梦采纳,获得10
20秒前
20秒前
20秒前
22秒前
Stone发布了新的文献求助10
22秒前
大力的熊猫完成签到,获得积分10
22秒前
22秒前
renheit发布了新的文献求助10
23秒前
Bowingyang发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
zpbb发布了新的文献求助10
26秒前
L1anJS完成签到,获得积分10
26秒前
26秒前
26秒前
26秒前
wwj1009完成签到 ,获得积分10
26秒前
baniu完成签到,获得积分10
27秒前
Huang发布了新的文献求助10
28秒前
CarolineOY发布了新的文献求助10
29秒前
30秒前
10Shi完成签到 ,获得积分10
30秒前
婼汐完成签到 ,获得积分10
30秒前
30秒前
31秒前
科研通AI2S应助Rubus36采纳,获得20
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147373
求助须知:如何正确求助?哪些是违规求助? 3684114
关于积分的说明 11640038
捐赠科研通 3378059
什么是DOI,文献DOI怎么找? 1853904
邀请新用户注册赠送积分活动 916291
科研通“疑难数据库(出版商)”最低求助积分说明 830240