Curvature Filters-Based Multiscale Feature Extraction for Hyperspectral Image Classification

模式识别(心理学) 人工智能 计算机科学 高光谱成像 特征提取 特征(语言学) 图像分割 判别式 棱锥(几何) 分割 计算机视觉 数学 几何学 语言学 哲学
作者
Qiaobo Hao,Bin Sun,Shutao Li,Melba M. Crawford,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2021.3091860
摘要

Exploring fast and effective spectral-spatial feature extraction algorithms for hyperspectral image (HSI) classification is one of the most focus problems in current hyperspectral remote-sensing research. Generally, the size of homogeneous regions in HSIs is not consistent in real scenario and real scenario usually consist of ground objects of different scales. Multiscale strategy starts to be used to construct discriminative features at different scales for HSI classification in recent years. To efficiently characterize the multiscale spectral-spatial features of HSIs, a curvature filters-based multiscale feature extraction method with multiscale superpixel segmentation constraint is proposed. The proposed algorithm is composed of the following major stages. First, global multiscale spectral-spatial features are efficiently extracted via progressively curvature filtering and downsampling operations, which can be regarded as an image pyramid decomposition method. Next, a multiscale superpixel segmentation strategy is applied on the first layer of the image pyramid, and a weighted mean operation is applied within and among superpixels to extract the local multiscale spatial features (LMSFs). Finally, the global multiscale curvature features (GMCFs) and the superpixel segmentation-based LMSFs are fused to form the final multiscale spectral-spatial features for classification purposes. To verify the capabilities of the proposed method, comprehensive experiments are performed on five real hyperspectral datasets. Experimental results demonstrate that the proposed method can significantly improve the classification accuracies compared to several standard HSI feature extraction and classification methods, especially when the number of samples for training is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助也曦采纳,获得10
刚刚
noya仙贝完成签到,获得积分10
刚刚
Hammer发布了新的文献求助10
2秒前
123lx完成签到,获得积分10
2秒前
4秒前
cocofan完成签到 ,获得积分10
4秒前
4秒前
Zhy完成签到,获得积分10
5秒前
6秒前
7秒前
jnoker完成签到 ,获得积分10
7秒前
李小伟发布了新的文献求助10
10秒前
江峰发布了新的文献求助10
11秒前
11秒前
12秒前
jackie发布了新的文献求助30
13秒前
14秒前
buhuidanhuixue完成签到,获得积分10
14秒前
15秒前
orixero应助cj采纳,获得10
15秒前
沉默的若云完成签到,获得积分10
16秒前
阿超完成签到,获得积分10
16秒前
麦苗果果发布了新的文献求助10
18秒前
科研通AI5应助syjssxwz采纳,获得10
19秒前
20秒前
呼呼啦啦完成签到,获得积分10
20秒前
jackie完成签到,获得积分20
21秒前
22秒前
24秒前
tzjz_zrz完成签到,获得积分10
25秒前
思源应助iebdus123采纳,获得10
25秒前
现代的南风完成签到 ,获得积分10
26秒前
26秒前
cj完成签到,获得积分10
26秒前
orixero应助麦苗果果采纳,获得10
26秒前
善良猪猫发布了新的文献求助10
27秒前
bai完成签到 ,获得积分10
28秒前
30秒前
32秒前
科研通AI5应助lty采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757