Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone

眼底(子宫) 医学 眼底摄影 眼底照相机 青光眼 计算机视觉 验光服务 检眼镜 人工智能 计算机科学 眼科 视网膜 荧光血管造影
作者
Ken‐ichi Nakahara,Ryo Asaoka,Masaki Tanito,Naoto Shibata,Keita Mitsuhashi,Yuri Fujino,Masato Matsuura,Tatsuya Inoue,Keiko Azuma,Ryo Obata,Hiroshi Murata
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:106 (4): 587-592 被引量:26
标识
DOI:10.1136/bjophthalmol-2020-318107
摘要

Background/aims To validate a deep learning algorithm to diagnose glaucoma from fundus photography obtained with a smartphone. Methods A training dataset consisting of 1364 colour fundus photographs with glaucomatous indications and 1768 colour fundus photographs without glaucomatous features was obtained using an ordinary fundus camera. The testing dataset consisted of 73 eyes of 73 patients with glaucoma and 89 eyes of 89 normative subjects. In the testing dataset, fundus photographs were acquired using an ordinary fundus camera and a smartphone. A deep learning algorithm was developed to diagnose glaucoma using a training dataset. The trained neural network was evaluated by prediction result of the diagnostic of glaucoma or normal over the test datasets, using images from both an ordinary fundus camera and a smartphone. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AROC). Results The AROC with a fundus camera was 98.9% and 84.2% with a smartphone. When validated only in eyes with advanced glaucoma (mean deviation value < −12 dB, N=26), the AROC with a fundus camera was 99.3% and 90.0% with a smartphone. There were significant differences between these AROC values using different cameras. Conclusion The usefulness of a deep learning algorithm to automatically screen for glaucoma from smartphone-based fundus photographs was validated. The algorithm had a considerable high diagnostic ability, particularly in eyes with advanced glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
胡智玮完成签到,获得积分10
3秒前
z不停完成签到,获得积分10
4秒前
Lucas应助如常采纳,获得10
4秒前
小蘑菇应助追寻的城采纳,获得10
5秒前
5秒前
5秒前
XiaoYuuu发布了新的文献求助30
6秒前
FashionBoy应助呓语采纳,获得10
6秒前
胥翔完成签到,获得积分10
7秒前
8秒前
diupapa发布了新的文献求助10
9秒前
向野完成签到,获得积分10
9秒前
李爱国应助小白采纳,获得10
11秒前
12秒前
Murphy_H完成签到,获得积分10
12秒前
12秒前
张静瑶发布了新的文献求助10
13秒前
lzy发布了新的文献求助10
14秒前
趣多多发布了新的文献求助20
17秒前
17秒前
稳重飞飞完成签到,获得积分10
18秒前
19秒前
爱科研的小鬼完成签到,获得积分10
19秒前
天真的雨发布了新的文献求助10
19秒前
19秒前
19秒前
wangkaijie发布了新的文献求助10
20秒前
20秒前
浮游应助陈皮糖不酸采纳,获得10
21秒前
FashionBoy应助清清甜采纳,获得10
22秒前
bkagyin应助小包采纳,获得10
22秒前
xinyuzhang发布了新的文献求助10
23秒前
24秒前
JamesPei应助学术机器1采纳,获得10
24秒前
高手中的糕手完成签到,获得积分10
24秒前
追寻的城发布了新的文献求助10
25秒前
小王发布了新的文献求助10
25秒前
可靠巧荷发布了新的文献求助10
25秒前
安兮发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4738251
求助须知:如何正确求助?哪些是违规求助? 4090187
关于积分的说明 12652140
捐赠科研通 3799354
什么是DOI,文献DOI怎么找? 2097936
邀请新用户注册赠送积分活动 1123561
科研通“疑难数据库(出版商)”最低求助积分说明 998821