亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

元动力学 亚稳态 分子动力学 人工神经网络 化学 量子 从头算 分解 计算化学 吉布斯自由能 生物系统 计算机科学 统计物理学 化学物理 热力学 机器学习 物理 量子力学 有机化学 生物
作者
Manyi Yang,Luigi Bonati,Daniela Polino,Michele Parrinello
出处
期刊:Catalysis Today [Elsevier]
卷期号:387: 143-149 被引量:179
标识
DOI:10.1016/j.cattod.2021.03.018
摘要

The study of chemical reactions in aqueous media is very important for its implications in several fields of science, from biology to industrial processes. However, modeling these reactions is difficult when water directly participates in the reaction, since it requires a fully quantum mechanical description of the system. Ab-initio molecular dynamics is the ideal candidate to shed light on these processes. However, its scope is limited by a high computational cost. A popular alternative is to perform molecular dynamics simulations powered by machine learning potentials, trained on an extensive set of quantum mechanical calculations. Doing so reliably for reactive processes is difficult because it requires including very many intermediate and transition state configurations. In this study we used an active learning procedure accelerated by enhanced sampling to harvest such structures and to build a neural-network potential to study the urea decomposition process in water. This allowed us to obtain the free energy profiles of this important reaction in a wide range of temperatures, to discover several novel metastable states, and improve the accuracy of the kinetic rates calculations. Furthermore, we found that the formation of the zwitterionic intermediate has the same probability of occurring via an acidic or a basic pathway, which could be the cause of the insensitivity of reaction rates to the solution pH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kexiya发布了新的文献求助10
2秒前
4秒前
一一完成签到,获得积分10
8秒前
10秒前
邵璞完成签到 ,获得积分10
11秒前
16秒前
888完成签到 ,获得积分10
18秒前
qiii完成签到,获得积分10
21秒前
23秒前
Amelia完成签到 ,获得积分10
27秒前
Gsupre完成签到,获得积分10
28秒前
支雨泽完成签到,获得积分10
29秒前
32秒前
JamesPei应助科研通管家采纳,获得10
36秒前
无题完成签到,获得积分10
36秒前
42秒前
47秒前
53秒前
古夕完成签到,获得积分10
1分钟前
adefq完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
南宫硕完成签到 ,获得积分10
1分钟前
1分钟前
linl完成签到,获得积分10
1分钟前
1分钟前
2分钟前
linl发布了新的文献求助10
2分钟前
柯语雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
李健的粉丝团团长应助Czl采纳,获得10
2分钟前
2分钟前
瘪良科研发布了新的文献求助10
2分钟前
Orange应助bird采纳,获得10
2分钟前
2分钟前
rrr完成签到 ,获得积分10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723535
求助须知:如何正确求助?哪些是违规求助? 5278836
关于积分的说明 15298864
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616415
邀请新用户注册赠送积分活动 1566241
关于科研通互助平台的介绍 1523131