Light-weight cross-view hierarchical fusion network for joint localization and identification in Alzheimer's disease with adaptive instance-declined pruning.

计算机科学 人工智能 模式识别(心理学) 接头(建筑物) 特征(语言学) 算法 人工神经网络 特征选择 机器学习 融合
作者
Kangfu Han,Jiaxiu Luo,Qing Xiao,Zhenyuan Ning,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085013-
标识
DOI:10.1088/1361-6560/abf200
摘要

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer's disease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local patch and global subject subnets, for joint localization and identification of the discriminative local patches and regions in the whole brain MRI, upon which feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD identification, the global subject subnet is developed to bias the allocation of available resources towards the most informative parts among these local patches to obtain global information for AD identification. Besides, an instance declined pruning (IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The proposed method was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the experimental results show that our proposed method can achieve good performance on AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助玩命的谷槐采纳,获得10
刚刚
1秒前
1秒前
李文思完成签到,获得积分10
2秒前
HLQF完成签到,获得积分10
2秒前
2秒前
心灵美的修洁完成签到 ,获得积分10
3秒前
2358489124完成签到,获得积分20
3秒前
科研八戒完成签到,获得积分10
3秒前
雷生发布了新的文献求助10
3秒前
winniebaro完成签到,获得积分10
4秒前
汎影发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助megumin采纳,获得30
4秒前
wangx发布了新的文献求助10
4秒前
TANG完成签到,获得积分10
5秒前
2667495668发布了新的文献求助10
5秒前
5秒前
betyby完成签到,获得积分10
5秒前
细心的傥完成签到,获得积分10
7秒前
frank完成签到,获得积分10
7秒前
shunshun发布了新的文献求助10
7秒前
8秒前
高高雪瑶完成签到,获得积分10
8秒前
尊敬寒松发布了新的文献求助30
9秒前
9秒前
认真的雪完成签到,获得积分10
9秒前
cdp发布了新的文献求助10
9秒前
科研通AI5应助高挑的亦旋采纳,获得10
10秒前
Grace完成签到,获得积分10
10秒前
糊涂的雁易应助树下小草采纳,获得10
10秒前
11秒前
11秒前
cablebot完成签到,获得积分10
11秒前
唠叨的天亦完成签到 ,获得积分10
11秒前
2358489124关注了科研通微信公众号
11秒前
张狗蛋完成签到 ,获得积分20
11秒前
alexye619完成签到,获得积分10
11秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868