Dual-Energy CT–Based Nomogram for Decoding HER2 Status in Patients With Gastric Cancer

医学 列线图 癌症 对偶(语法数字) 放射科 内科学 肿瘤科 核医学 文学类 艺术
作者
Huiping Zhao,Weiran Li,Wenpeng Huang,Yujiao Yang,Wei Shen,Pan Liang,Jianbo Gao
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:216 (6): 1539-1548 被引量:15
标识
DOI:10.2214/ajr.20.23528
摘要

OBJECTIVE. The purpose of this study was to develop and evaluate a dual-energy CT (DECT)-based nomogram for noninvasive identification of the status of human epidermal growth factor receptor 2 (HER2; also known as ERBB2) expression in gastric cancer (GC). MATERIALS AND METHODS. A total of 206 patients with histologically proven GC who underwent pretreatment DECT were retrospectively recruited and randomly allocated to a training cohort (n = 144) or a test cohort (n = 62). Information on clinical characteristics, qualitative imaging features, and quantitative DECT parameters was collected. Univariate analysis and multivariate logistic regression were implemented to screen independent predictors of HER2 status. An individualized nomogram was built, and its discrimination, calibration, and clinical usefulness were assessed. RESULTS. Tumor location, the iodine concentration of the tumor in the venous phase, and the normalized iodine concentration of the tumor in the venous phase were significant factors predictive of HER2 status (all p < .05). After these three indicators were integrated, the proposed nomogram showed a favorable diagnostic performance, with AUCs of 0.807 (95% CI, 0.718-0.897) in the training cohort and 0.815 (95% CI, 0.661-0.968) in the test cohort. The nomogram showed a preferable fitting (all p > .05 by the Hosmer-Lemeshow test) and would offer more net benefits than simple default strategies within a wide range of threshold probabilities in both cohorts. CONCLUSION. The DECT-based nomogram has great application potential in terms of detecting HER2 status in GC, and can serve as a novel substitute for invasive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏獭发布了新的文献求助10
刚刚
可爱的函函应助yyyu采纳,获得30
刚刚
谢小盟应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
Akim应助科研通管家采纳,获得30
3秒前
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
gggg完成签到 ,获得积分10
4秒前
Kimberley发布了新的文献求助10
6秒前
淡淡的秋天完成签到 ,获得积分10
7秒前
廖怡星完成签到,获得积分20
7秒前
开心的梦龙完成签到,获得积分10
8秒前
wen完成签到,获得积分10
9秒前
NexusExplorer应助专注雨珍采纳,获得10
10秒前
14秒前
科目三应助七塔蹦采纳,获得30
15秒前
16秒前
白蒲桃完成签到,获得积分10
17秒前
噜lu发布了新的文献求助10
21秒前
赘婿应助豆⑧采纳,获得10
22秒前
廖怡星发布了新的文献求助10
22秒前
student完成签到,获得积分10
23秒前
23秒前
wh雨完成签到,获得积分10
25秒前
高高的坤完成签到 ,获得积分10
26秒前
29秒前
天天快乐应助难过的谷芹采纳,获得30
29秒前
李建行发布了新的文献求助10
29秒前
852应助陈漂亮采纳,获得10
30秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128362
求助须知:如何正确求助?哪些是违规求助? 3665624
关于积分的说明 11598008
捐赠科研通 3364710
什么是DOI,文献DOI怎么找? 1848881
邀请新用户注册赠送积分活动 912699
科研通“疑难数据库(出版商)”最低求助积分说明 828134