生物
杠杆(统计)
计算生物学
功能基因组学
免疫系统
基因组学
计算机科学
人工智能
生物信息学
基因组
免疫学
遗传学
基因
作者
Yuhan Hao,Stephanie Hao,Erica Andersen‐Nissen,William M. Mauck,Shiwei Zheng,Andrew Butler,Madeline Lee,Aaron J. Wilk,Charlotte A. Darby,Michael Zager,Paul Hoffman,Marlon Stoeckius,Efthymia Papalexi,Eleni P. Mimitou,Jaison Jain,Avi Srivastava,Tim Stuart,Lamar M. Fleming,Bertrand Z. Yeung,Angela J. Rogers
出处
期刊:Cell
[Cell Press]
日期:2021-05-31
卷期号:184 (13): 3573-3587.e29
被引量:11253
标识
DOI:10.1016/j.cell.2021.04.048
摘要
The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
科研通智能强力驱动
Strongly Powered by AbleSci AI