清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach

医学 无线电技术 特征选择 Lasso(编程语言) 逻辑回归 置信区间 人工智能 接收机工作特性 模式识别(心理学) 机器学习 支持向量机 随机森林 计算机科学 内科学 万维网
作者
Yuling Peng,Yineng Zheng,Zeyun Tan,Junhang Liu,Yayun Xiang,Huan Liu,Linquan Dai,Yanjun Xie,Jingjie Wang,Chun Zeng,Yongmei Li
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:53: 102989-102989 被引量:8
标识
DOI:10.1016/j.msard.2021.102989
摘要

Background: The volume change of multiple sclerosis (MS) lesion is related to its activity and can be used to assess disease progression. Therefore, the purpose of this study was to develop radiomics models for predicting the evolution of unenhanced MS lesions by using different kinds of machine learning algorithms and explore the optimal model. Methods: In this prospective observation, 45 follow-up MR images obtained in 36 patients with MS (mean age 32.53±10.91; 23 women, 13 men) were evaluated. The lesions will be defined as interval activity and interval inactivity, respectively, based on the percentage of enlargement or reduction of the lesion >20% in the follow-up MR images. We extracted radiomic features of lesions on FLAIR images, and used recursive feature elimination (RFE), ReliefF algorithm and least absolute shrinkage and selection operator (LASSO) for feature selection, then three classification models including logistic regression, random forest and support vector machine (SVM) were used to build predictive models. The performance of the models were evaluated based on the sensitivity, specificity, precision, negative predictive value (NPV) and receiver operating characteristic curve (ROC) curves analyses. Results: 135 interval inactivity lesions and 110 interval activity lesions were registered in our study. A total of 972 radiomics features were extracted, of which 265 were robust. The consistency and effectiveness of model performance were compared and verified by different combinations of feature selection and machine learning methods in different K-fold cross-validation strategies where K ranges from 5 to 10, thus demonstrating the stability and robustness. SVM classifier with ReliefF algorithm had the best prediction performance with an average accuracy of 0.827, sensitivity of 0.809, specificity of 0.841, precision of 0.921, NPV of 0.948 and the areas under the ROC curves (AUC) of 0.857 (95% CI: 0.812–0.902) in the cohorts. Conclusion: The results demonstrated that the radiomics-based machine learning model has potential in predicting the evolution of MS lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光合作用完成签到,获得积分10
25秒前
45秒前
51秒前
1分钟前
1分钟前
Party完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助震动的凡柔采纳,获得10
2分钟前
CherylZhao完成签到,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
六一完成签到 ,获得积分10
2分钟前
2分钟前
丹妮完成签到 ,获得积分10
3分钟前
3分钟前
ndx1993完成签到 ,获得积分10
3分钟前
飞快的冰淇淋完成签到 ,获得积分10
3分钟前
慕青应助Mine采纳,获得10
3分钟前
ZJakariae应助Sandy采纳,获得10
4分钟前
勤劳冰烟完成签到,获得积分10
4分钟前
Ava应助狂野的大公猪采纳,获得10
5分钟前
研友_LpvQlZ完成签到,获得积分10
5分钟前
5分钟前
5分钟前
533发布了新的文献求助10
6分钟前
533完成签到,获得积分20
6分钟前
直率的笑翠完成签到 ,获得积分10
6分钟前
CHEN完成签到,获得积分10
6分钟前
6分钟前
Mine发布了新的文献求助10
6分钟前
JrPaleo101完成签到,获得积分10
6分钟前
6分钟前
Sandy发布了新的文献求助10
7分钟前
Sandy完成签到,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
7分钟前
沈惠映完成签到 ,获得积分10
7分钟前
7分钟前
隔壁老王发布了新的文献求助10
7分钟前
丘比特应助隔壁老王采纳,获得10
7分钟前
新奇完成签到 ,获得积分10
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360245
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076