Exploring Prognostic Signatures of Hepatocellular Carcinoma and the potential implications in Tumor Immune Microenvironment

Lasso(编程语言) 比例危险模型 接收机工作特性 肝细胞癌 基因 生存分析 癌症研究 相关性 生物 回归分析 免疫系统 医学 计算生物学 内科学 肿瘤科 免疫学 统计 遗传学 计算机科学 数学 几何学 万维网
作者
Hongxu Chen,Zhijing Jiang,Bingshi Yang,Guiling Yan,Xiaochen Wang,Shuning Zang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:24 被引量:2
标识
DOI:10.2174/1386207324666210309100923
摘要

The objective of this study is to construct a prognostic model using genetic markers of liver cancer and explore the signature genes associated with the tumor immune microenvironment.Cox proportional hazards regression analysis was carried out to screen the significant HR using the dataset of TCGA Liver Cancer (LIHC) gene expression data. Then LASSO (least absolute shrinkage and selection operator) was performed to select the minimal variables with significant HR of genes. Thus, the prognostic model was constructed by the minimal variables with their HR. Time-dependent receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) value was used to assess the prognostic performance. Then the patients were divided into high and low-risk groups by the median of the model. Survival analysis was performed on the two groups with testing and an independent dataset. Furthermore, enrichment analysis of signature mRNAs and lncRNAs and their co-expression genes was performed. Then, Spearman rank correlation was used to calculate the correlation between immune cells and genes in the prognostic model, and abundance difference of the immune cells in high and low risks groups was tested.A total of 5989 genes with significant HR were identified. 6 key genes (three mRNAs: DHX37, SMIM7, and MFSD1, three lncRNAs: PIWIL4, KCNE5, and LOC100128398) screened by LASSO were used to construct the model with their HR value respectively. The AUC values of 1 and 5-year overall survival were 0.78 and 0.76 in discovery data and 0.67 and 0.68 in testing data. Survival analysis performed significantly discriminated high and low groups with testing and independent data. Furthermore, many immune cells such as nTreg found a significant correlation with the genes in the prognostic model, and many immune cells showed significantly different abundance in high and low-risk groups.In the study, we used Univariate Cox analyses and LASSO algorithm with TCGA gene expression data to construct the prognostic model in liver cancer patients. The prognostic model comprised of three mRNAs, including DHX37, SMIM7, MFSD1, and three lncRNAs, including PIWIL4, KCNE5, and LOC100128398. Furthermore, these gene expression levels were associated with the abundance of some immune cells, such as nTreg. Also, many immune cells have significantly different abundance in high and low-risk groups. All these results indicated that the combination with all these six genes could be the potential biomarker for the prognosis of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不发一区不改名完成签到 ,获得积分10
1秒前
icyyy完成签到,获得积分10
1秒前
酷酷的笔记本完成签到,获得积分10
2秒前
ruby完成签到,获得积分10
3秒前
aumppae完成签到 ,获得积分10
4秒前
冬瓜鑫完成签到,获得积分10
4秒前
追寻的问玉完成签到 ,获得积分10
7秒前
都要多喝水完成签到,获得积分10
8秒前
zzuwxj完成签到,获得积分10
8秒前
光之战士完成签到,获得积分10
10秒前
11秒前
文静灵阳完成签到 ,获得积分10
13秒前
13秒前
LIKUN完成签到,获得积分10
13秒前
科研通AI5应助追寻梦之采纳,获得30
15秒前
15秒前
魔幻的语雪完成签到,获得积分10
16秒前
Migrol完成签到,获得积分10
16秒前
hang完成签到,获得积分10
16秒前
CDQ完成签到,获得积分10
16秒前
李健的小迷弟应助wlnhyF采纳,获得10
16秒前
酷波er应助xinyueyue采纳,获得10
17秒前
儒雅沛凝发布了新的文献求助10
17秒前
SY完成签到,获得积分10
17秒前
胡杨柳发布了新的文献求助10
18秒前
weiya发布了新的文献求助10
18秒前
Free完成签到,获得积分10
19秒前
萝卜卷心菜完成签到 ,获得积分10
19秒前
葱油饼完成签到 ,获得积分10
21秒前
long完成签到,获得积分10
21秒前
小伙子完成签到,获得积分0
22秒前
神勇烤鸡完成签到,获得积分10
22秒前
嗷嗷完成签到,获得积分10
23秒前
奔铂儿钯完成签到,获得积分10
24秒前
慧喆完成签到 ,获得积分10
24秒前
phoenix001完成签到,获得积分0
27秒前
28秒前
luz完成签到,获得积分10
28秒前
gudujian870928完成签到,获得积分10
30秒前
平凡完成签到,获得积分10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859