碳水化合物
化学
双功能
生物分子
连接器
组合化学
结合
糖化学
有机化学
生物化学
催化作用
数学
计算机科学
操作系统
数学分析
作者
Henning S. G. Beckmann,Andrea Niederwieser,Manfred Wießler,Valentin Wittmann
标识
DOI:10.1002/chem.201200382
摘要
Abstract Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.
科研通智能强力驱动
Strongly Powered by AbleSci AI