八面体
平面的
倾斜(摄像机)
领域(数学分析)
张量(固有定义)
对称(几何)
边界(拓扑)
操作员(生物学)
几何学
材料科学
凝聚态物理
晶体结构
结晶学
物理
数学
数学分析
化学
计算机科学
计算机图形学(图像)
基因
转录因子
抑制因子
生物化学
出处
期刊:Acta Crystallographica Section A
[Wiley]
日期:2011-03-09
卷期号:67 (3): 191-199
被引量:32
标识
DOI:10.1107/s0108767311002042
摘要
A mathematical framework is developed to describe tilted perovskites using a tensor description of octahedral deformations. The continuity of octahedral tilts through the crystal is described using an operator which relates the deformations of adjacent octahedra; examination of the properties of this operator upon application of symmetry elements allows the space group of tilted perovskites to be obtained. It is shown that the condition of octahedral continuity across a planar defect such as an anti-phase boundary or domain wall necessarily leads to different octahedral tilting at the defect, and a method is given to predict the local tilt system which will occur in any given case. Planar boundaries in the rhombohedral R3c a(-)a(-)a(-) tilt system are considered as an example.
科研通智能强力驱动
Strongly Powered by AbleSci AI