清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application and assessment of multiscale bending energy for morphometric characterization of neural cells

曲率 弯曲 能量(信号处理) 形状分析(程序分析) 表征(材料科学) 特征(语言学) 人工神经网络 算法 计算机科学 人工智能 光学 数学分析 物理 几何学 统计物理学 数学 静态分析 语言学 哲学 量子力学 热力学 程序设计语言
作者
Roberto M. César,Luciano da Fontoura Costa
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:68 (5): 2177-2186 被引量:57
标识
DOI:10.1063/1.1148112
摘要

The estimation of the curvature of experimentally obtained curves is an important issue in many applications of image analysis including biophysics, biology, particle physics, and high energy physics. However, the accurate calculation of the curvature of digital contours has proven to be a difficult endeavor, mainly because of the noise and distortions that are always present in sampled signals. Errors ranging from 1% to 1000% have been reported with respect to the application of standard techniques in the estimation of the curvature of circular contours [M. Worring and A. W. M. Smeulders, CVGIP: Im. Understanding, 58, 366 (1993)]. This article explains how diagrams of multiscale bending energy can be easily obtained from curvegrams and used as a robust general feature for morphometric characterization of neural cells. The bending energy is an interesting global feature for shape characterization that expresses the amount of energy needed to transform the specific shape under analysis into its lowest energy state (i.e., a circle). The curvegram, which can be accurately obtained by using digital signal processing techniques (more specifically through the Fourier transform and its inverse, as described in this work), provides multiscale representation of the curvature of digital contours. The estimation of the bending energy from the curvegram is introduced and exemplified with respect to a series of neural cells. The masked high curvature effect is reported and its implications to shape analysis are discussed. It is also discussed and illustrated that, by normalizing the multiscale bending energy with respect to a standard circle of unitary perimeter, this feature becomes an effective means for expressing shape complexity in a way that is invariant to rotation, translation, and scaling, and that is robust to noise and other artifacts implied by image acquisition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助xiang采纳,获得30
1秒前
婉莹完成签到 ,获得积分0
19秒前
Eden完成签到 ,获得积分10
19秒前
请叫我女侠完成签到,获得积分10
24秒前
28秒前
FashionBoy应助littleyi采纳,获得10
29秒前
tszjw168完成签到 ,获得积分0
35秒前
35秒前
45秒前
量子星尘发布了新的文献求助10
53秒前
huanghe完成签到,获得积分0
58秒前
曹国庆完成签到 ,获得积分10
1分钟前
夜休2024完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
冷酷迎彤发布了新的文献求助10
1分钟前
1分钟前
大玉124完成签到 ,获得积分10
2分钟前
冷酷迎彤完成签到,获得积分10
2分钟前
prawn218完成签到,获得积分10
2分钟前
好吃完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分0
2分钟前
冷酷迎彤关注了科研通微信公众号
2分钟前
2041完成签到,获得积分10
2分钟前
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
隐形曼青应助冷酷迎彤采纳,获得10
3分钟前
3分钟前
奶奶的龙应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
kobee完成签到 ,获得积分10
3分钟前
阿尔法贝塔完成签到 ,获得积分10
3分钟前
唠叨的凌雪完成签到,获得积分10
3分钟前
3分钟前
giao完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755769
求助须知:如何正确求助?哪些是违规求助? 5498319
关于积分的说明 15381570
捐赠科研通 4893654
什么是DOI,文献DOI怎么找? 2632314
邀请新用户注册赠送积分活动 1580180
关于科研通互助平台的介绍 1536025