清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interaction of Arginine with Proteins and the Mechanism by Which It Inhibits Aggregation

精氨酸 化学 水溶液 盐桥 分子动力学 生物物理学 氢键 分子 计算化学 氨基酸 结晶学 生物化学 有机化学 突变体 生物 基因
作者
Diwakar Shukla,Bernhardt L. Trout
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:114 (42): 13426-13438 被引量:189
标识
DOI:10.1021/jp108399g
摘要

Aqueous arginine solutions are used extensively for inhibiting protein aggregation. There are several theories proposed to explain the effect of arginine on protein stability, but the exact mechanism is still not clear. To understand the mechanism of protein cosolvent interaction, the intraprotein, protein−solvent, and intrasolvent interactions have to be understood. Molecular dynamics simulations of aqueous arginine solutions were carried out for experimentally accessible concentrations and temperature ranges to study the structure of the solution and its energetic properties and obtain insight into the mechanism by which arginine inhibits protein aggregation. Simulations of proteins (α-chymotrypsinogen A and melittin) were performed. Structurally, the most striking feature of the aqueous arginine solutions is the self-association of arginine molecules. Arginine shows a marked tendency to form clusters with head to tail hydrogen bonding. Due to the presence of the three charged groups, there are several possible configurations in which arginine molecules interact. At relatively high concentrations, these arginine clusters associate with other clusters and monomeric arginine molecules to form large clusters. The hydrogen bonds between arginine molecules were found to be stronger than those between arginine and water, which makes the process of self-association enthalpically favorable. From the simulation of the proteins in aqueous arginine solution, arginine is found to interact with the aromatic and charged side chains of surface residues. A probable mechanism of the effect of arginine on protein stability consistent with our findings is proposed. In particular, arginine interacts with aromatic and charged residues due to cation−π interaction and salt-bridge formation, respectively, to stabilize the partially unfolded intermediates. The self-interaction of arginine leads to the formation of clusters which, due to their size, crowd out the protein−protein interaction. The mechanisms proposed in the literature are analyzed on the basis of the simulation results reported in this paper and recent experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violetlishu完成签到 ,获得积分10
15秒前
yangsha_hust完成签到 ,获得积分10
18秒前
读行千万完成签到 ,获得积分20
18秒前
呆呆的猕猴桃完成签到 ,获得积分10
21秒前
风起云涌龙完成签到 ,获得积分0
26秒前
美丽的楼房完成签到 ,获得积分10
35秒前
TXY_Cathy完成签到 ,获得积分10
35秒前
高高的巨人完成签到 ,获得积分10
46秒前
朴素海亦完成签到 ,获得积分10
48秒前
widesky777完成签到 ,获得积分10
48秒前
苏州九龙小7完成签到 ,获得积分10
52秒前
xun完成签到,获得积分10
55秒前
清净126完成签到 ,获得积分10
1分钟前
隐形的以筠完成签到 ,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
胖大墨和黑大朵完成签到 ,获得积分10
1分钟前
wk990240应助孤独的念瑶采纳,获得10
1分钟前
孙哈哈完成签到 ,获得积分10
1分钟前
老宇126完成签到,获得积分10
1分钟前
zoele完成签到 ,获得积分10
1分钟前
清净163完成签到,获得积分10
2分钟前
墨mo完成签到 ,获得积分10
2分钟前
开放访天完成签到 ,获得积分10
2分钟前
2分钟前
天宇发布了新的文献求助10
3分钟前
deniroming完成签到 ,获得积分10
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
李东东完成签到 ,获得积分10
3分钟前
勤恳的雪卉完成签到,获得积分10
3分钟前
丰富的绮山完成签到,获得积分10
4分钟前
坚强的嚣完成签到 ,获得积分10
4分钟前
木南大宝完成签到 ,获得积分10
4分钟前
阿帕奇完成签到 ,获得积分10
4分钟前
调皮从筠完成签到 ,获得积分10
5分钟前
酷波er应助talpionchen采纳,获得10
5分钟前
研友_VZG7GZ应助阿泽采纳,获得10
5分钟前
雪流星完成签到 ,获得积分10
5分钟前
pureW7完成签到 ,获得积分10
5分钟前
shiminyuan完成签到,获得积分10
5分钟前
DocZhao完成签到 ,获得积分10
5分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387601
求助须知:如何正确求助?哪些是违规求助? 2093987
关于积分的说明 5270078
捐赠科研通 1820763
什么是DOI,文献DOI怎么找? 908273
版权声明 559267
科研通“疑难数据库(出版商)”最低求助积分说明 485216