A Survey of Sparse Representation: Algorithms and Applications

稀疏逼近 计算机科学 算法 贪婪算法 规范(哲学) 代表(政治) 缩小 神经编码 人工智能 匹配追踪 理论计算机科学 压缩传感 政治学 政治 程序设计语言 法学
作者
Zheng Zhang,Yong Xu,Jian Yang,Xuelong Li,David Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:3: 490-530 被引量:852
标识
DOI:10.1109/access.2015.2430359
摘要

Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with $l_0$-norm minimization, sparse representation with $l_p$-norm (0$<$p$<$1) minimization, sparse representation with $l_1$-norm minimization and sparse representation with $l_{2,1}$-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MW完成签到,获得积分10
刚刚
momo完成签到,获得积分10
1秒前
鲁鲁修完成签到,获得积分10
1秒前
充电宝应助对对碰采纳,获得10
1秒前
认真一斩完成签到,获得积分10
1秒前
1秒前
淡淡的白凡完成签到,获得积分10
2秒前
冰柠橙夏发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
星光发布了新的文献求助10
2秒前
Seul发布了新的文献求助10
3秒前
Daiys完成签到,获得积分10
3秒前
李爱国应助ccc6195采纳,获得20
3秒前
萧瑟处完成签到,获得积分10
4秒前
科研通AI6.1应助bodao采纳,获得10
4秒前
4秒前
benben发布了新的文献求助10
4秒前
4秒前
认真一斩发布了新的文献求助10
4秒前
5秒前
季生完成签到,获得积分10
5秒前
Hello应助小太阳采纳,获得10
5秒前
5秒前
8秒前
miemiemei发布了新的文献求助10
8秒前
didi发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
我不爱池鱼完成签到,获得积分0
9秒前
9秒前
10秒前
10秒前
缥缈的飞荷完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751732
求助须知:如何正确求助?哪些是违规求助? 5470286
关于积分的说明 15371268
捐赠科研通 4890828
什么是DOI,文献DOI怎么找? 2630034
邀请新用户注册赠送积分活动 1578225
关于科研通互助平台的介绍 1534276