窑
木材干燥
软木
气流
堆栈(抽象数据类型)
工艺工程
工作(物理)
制浆造纸工业
环境科学
扩散
机械工程
材料科学
计算机科学
工程类
废物管理
复合材料
水分
热力学
物理
程序设计语言
作者
Shusheng Pang,A. N. Haslett
出处
期刊:Drying Technology
[Taylor & Francis]
日期:1995-01-01
卷期号:13 (8-9): 1635-1674
被引量:30
标识
DOI:10.1080/07373939508917045
摘要
ABSTRACT High temperature drying of softwood is used because it provides much faster drying rate than is possible at lower temperatures. However, the occurrence of some drying defects limits its use where the quality is critical. In order to understand the drying phenomena and to describe the drying processes, numcrous mathematical models have been developed in the past two decades. The diffusion model is the earliest attempt to describe wood drying processes and is relatively simple in form, so it is often used for stress analysis. However.further substantial work is still required before it is possible to apply the stress model to kiln control. Recently. transpon-based mathematical models have been receiving attention in modelling studies. This review discusses one of these models, a physiological-transport-based model, which has been further applied to the drying of mixed sap/heartwood boards and the drying of a kiln-wide stack. The mixed boards with a thin heanwood layer parallel to the flat surface are considered to have added difficulty in drying. In the analysis of the timber stack drying, a kiln-wide model is proposed in which the above physiological-transpon-based model is used to generate the characteristic drying curves. Airflow reversal is essential in kiln Keywords and phrases:: airflow reversaldrying stressheartwoodkiln-wide drying modelmixed sap/heartwoodsapwoodsingle board drying modelstack of boards
科研通智能强力驱动
Strongly Powered by AbleSci AI