医学
微观结构
超高分子量聚乙烯
聚乙烯
复合材料
材料科学
作者
Michael D. Ries,Lisa A. Pruitt
标识
DOI:10.1097/01.blo.0000185310.59202.e5
摘要
Ultra-high molecular weight polyethylene is a semicrystalline polymer, which means that a portion of the molecules is in a solid crystalline phase and the remaining portion is in a rubbery amorphous phase. Varying the polymer chemistry in the two phases can alter the mechanical properties of the material. When highly cross-linked polyethylene is formed, the cross-links occur in the amorphous but not the crystalline region. Remelting after irradiation-induced cross-linking neutralizes the free radicals that are caused by irradiation but also decreases the amount of crystallinity. Decreased crystallinity can contribute to a decrease in mechanical properties. Annealing below the melt temperature after irradiation retains a higher level of crystallinity. However, heating below the melt temperature does not neutralize irradiation-induced free radicals that can then react with oxygen, causing oxidative degradation. Newer "second-generation" highly cross-linked polyethylenes have been developed that are annealed below the melt temperature, but use either a pharmacologic antioxidant, mechanical deformation, or sequential low-dose irradiation and annealing treatments rather than heating above the melt point to neutralize residual free radicals. High-pressure treatment at elevated temperatures also can increase crystallinity. However, increased crystallinity is associated with an increase in modulus and contact stress, which can increase wear. Although cross-linking ultra-high molecular weight polyethylene can reduce wear, currently available highly cross-linked polyethylenes also decrease mechanical properties when compared with conventional ultra-high molecular weight polyethylene, so that use of these materials in total knee arthroplasty may contribute to mechanical failure of the bearing surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI