氧化还原
化学工程
电解
自行车
材料科学
流动电池
无机化学
锌
储能
电化学
枝晶(数学)
化学
电解水
电流密度
能量密度
流量(数学)
氧化物
氢
析氧
理论(学习稳定性)
电极
调解人
法拉第效率
硫黄
连续流动
多硫化物
作者
Fangyuan Xiao,Jiayou Ren,Hongchao Zhang,Yuanwei Zhang,Wenwen Cao,Haifeng Li,Lei Wei,Guojin Liang,Hui-Ming Cheng
出处
期刊:Small
[Wiley]
日期:2025-11-18
卷期号:: e10491-e10491
标识
DOI:10.1002/smll.202510491
摘要
Abstract Alkaline zinc‐iron flow batteries (AZIFBs) represent a promising candidate for large‐scale, long‐duration energy storage applications. However, the formation and accumulation of inactive zinc (“dead Zn”) during cycling significantly compromise the reaction reversibility and cycling stability of AZIFBs. In this study, 2‐amino‐3‐hydroxyphenazine is introduced as a redox mediator (RM) to spontaneously and chemically dissolve the dead Zn, where the RM exhibits high structural stability and redox kinetics. It eliminates continuous Zn dendrite growth and dead Zn accumulation in the electrolyte, thereby significantly enhancing cycling stability. In addition, the RM is revealed to effectively suppress the parasitic hydrogen evolution reaction (HER) from water electrolysis by stabilizing the concentration of Zn(OH) 4 2− anions, even at a high anolyte utilization ratio. Therefore, the AZIFBs deliver exceptional cycling stability at 100% anolyte utilization ratio for over 2300 h at an areal capacity of 20 mAh cm −2 and a current density of 20 mA cm −2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI