Fitness Landscape for Antibodies 2: Benchmarking Reveals That Protein AI Models Cannot Yet Consistently Predict Developability Properties

作者
Michael Chungyoun,J. Robert Gray
标识
DOI:10.64898/2025.12.27.696706
摘要

A prominent application of machine learning in therapeutic antibody design is the development of models that can generate or screen antibody candidates with a high probability of success in manufacturing and clinical trials. These models must accurately represent sequence-structure-function relationships, also known as the fitness landscape. Previous protein function benchmarks examine fitness landscapes across diverse protein families, but they exclude antibody data. Here, we introduce the second iteration of the Fitness Landscape for Antibodies (FLAb2), the largest public therapeutic antibody design benchmark to date. The datasets collected in FLAb2 contain developability assay data for over 4M antibodies across 32 studies, encompassing seven properties of therapeutic antibodies: thermostability, expression, aggregation, binding affinity, pharmacokinetics, polyreactivity, and immunogenicity. Using the curated data, we evaluate the performance of 30 artificial intelligence (AI) and biophysical models in learning these properties. Protein AI models on average do not produce statistically significant correlations for most (80%) of developability datasets. No models correlate with all properties or across multiple datasets of similar properties. Zero-shot predictions from pretrained models are incapable of accurately predicting all developability properties, although several models (IgLM, ProGen2, Chai-1, ESM2, ISM, IgFold) produce statistically significant correlations for multiple datasets for thermostability, expression, binding, or immunogenicity. Fine-tuning with at least 10^2 points improves performance on thermostability, aggregation, and binding, but polyreactivity and pharmacokinetics lack enough data for significance. Yet it is humbling to observe that given enough developability data (10^3 points), a fine-tuned one-hot encoding model can match the performance of fine-tuned billion-parameter pretrained models. Training data composition influences performance more than model architecture, and intrinsic biophysical properties (thermostability) are more readily learned than extrinsic properties (immunogenicity, pharmacokinetics). Controlling for germline distance with partial correlation reveals that protein language models draw substantially on evolutionary signal; on average, germline edit distance accounts for 40% of their apparent predictive power. FLAb2 data are accessible at https://github.com/Graylab/FLAb, together with scripts that allow researchers to benchmark, compare, and iteratively improve new AI-based developability prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
king发布了新的文献求助10
1秒前
zero完成签到 ,获得积分10
1秒前
1秒前
害羞的夏柳完成签到,获得积分10
2秒前
魏凡之完成签到,获得积分10
2秒前
义气的千风完成签到,获得积分10
2秒前
2秒前
郭哈哈完成签到,获得积分20
3秒前
3秒前
傲娇皮皮虾完成签到 ,获得积分10
4秒前
songsong668发布了新的文献求助10
4秒前
郭哈哈发布了新的文献求助10
7秒前
HL关闭了HL文献求助
7秒前
flyy发布了新的文献求助10
8秒前
FashionBoy应助Saluzi采纳,获得10
8秒前
gezid完成签到 ,获得积分10
8秒前
jjy完成签到,获得积分10
8秒前
小研人完成签到,获得积分10
8秒前
大方的白羊关注了科研通微信公众号
8秒前
nick发布了新的文献求助10
9秒前
Jie完成签到,获得积分10
11秒前
爆米花应助腼腆的缘分采纳,获得10
11秒前
wxyinhefeng完成签到,获得积分10
11秒前
JamesPei应助水水水采纳,获得10
15秒前
合适的平安完成签到,获得积分10
15秒前
15秒前
16秒前
Saluzi完成签到,获得积分20
16秒前
Z126完成签到,获得积分10
16秒前
woy031222完成签到,获得积分10
17秒前
star完成签到,获得积分10
17秒前
nick完成签到,获得积分10
18秒前
腼腆的缘分完成签到,获得积分10
19秒前
19秒前
koui完成签到 ,获得积分10
19秒前
浮游应助木木啊采纳,获得10
20秒前
水水水完成签到,获得积分10
20秒前
20秒前
Saluzi发布了新的文献求助10
20秒前
NexusExplorer应助小仙猪采纳,获得50
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556401
求助须知:如何正确求助?哪些是违规求助? 4640903
关于积分的说明 14663795
捐赠科研通 4582989
什么是DOI,文献DOI怎么找? 2513798
邀请新用户注册赠送积分活动 1488319
关于科研通互助平台的介绍 1459064