聚酯纤维
材料科学
结晶度
热塑性弹性体
高分子化学
弹性体
酯交换
无定形固体
缩聚物
聚合物
有机化学
复合材料
共聚物
化学
催化作用
作者
Zhen Jia,Jinggang Wang,Liyuan Sun,Jin Zhu,Xiaoqing Liu
摘要
ABSTRACT A serials of fully bio‐based poly(ethylene dodecanedioate‐2,5‐furandicarboxylate) (PEDF) were synthesized from Dodecanedioic acid (DDCA), 2,5‐Furandicarboxylic acid (2,5‐FDCA), and ethylene glycol through a two‐step procedure consisted of transesterification and polycondensation. After their chemical structures were confirmed by Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy, their thermal, mechanical, and biodegradation properties were investigated in detail. Results showed that the chemical composition of PEDFs could be easily controlled by the feeding mole ratio of DDCA to FDCA and they possessed the characteristic of random copolyester with the intrinsic viscosity ranged from 0.82 to 1.2 dL/g. With the varied mole ratio of DDCA to FDCA, PEDFs could be changed from semicrystalline thermoplastic to the completely amorphous elastomer, indicated by the elongation at break ranged from 4 for poly(ethylene 2,5‐furandicarboxylate) to 1500% for amorphous PEDF‐40. The amorphous PEDF‐30 and PEDF‐40 showed satisfactory shape recovery after cyclic tensile test, which was the typical behavior for elastomer. Enzymatic degradation test indicated that all the PEDFs were biodegradable and the degradation rate was heavily affected by their chemical compositions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 46076.
科研通智能强力驱动
Strongly Powered by AbleSci AI