FYN公司
蛋白激酶B
小发夹RNA
化学
GSK3B公司
氧化应激
细胞生物学
PI3K/AKT/mTOR通路
KEAP1型
基因敲除
磷酸化
细胞凋亡
生物化学
葛兰素史克-3
信号转导
生物
转录因子
原癌基因酪氨酸蛋白激酶Src
基因
作者
Rong Hua,Yini Liang,Yingcai Niu
标识
DOI:10.1016/j.freeradbiomed.2018.03.028
摘要
Oxidative stress is an important pathogenic factor in Alzheimer's disease (AD). Recently, nuclear factor E2-related factor 2 (Nrf2) has emerged as a master regulator for the endogenous antioxidant response, and thus represents an attractive therapeutic target against AD. The aim of this study is to test the hypothesis that rosmarinic acid (RosA) attenuates amyloid-β (Aβ)-evoked oxidative stress through activating Nrf2-inducible cellular antioxidant defense system. Here, we reported that RosA attenuated Aβ-induced cellular reactive oxygen species (ROS) generation and lipid hydroperoxides (LPO). Interestingly, knockdown of Nrf2 by plasmid-based short hairpin RNA (shRNA) abrogated, at least in part, RosA-mediated neuroprotection in Aβ-challenged PC12 cells. Mechanistically, RosA enhanced the nuclear translocation of Nrf2 and binding to antioxidant response element (ARE) core element but did not induced Nrf2 transcription. Simultaneously, RosA induced a set of Nrf2 downstream target genes encoding phase-II antioxidant enzymes. Furthermore, RosA enhanced protein kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK-3β) phosphorylation at Ser9, and Fyn phosphorylation. Noteworthy, pharmacological inhibition or gene knockdown studies demonstrated that Akt locate upstream of GSK-3β and regulate Nrf2 through Fyn in the context of PC12 cells pre-incubated with RosA following exposed to Aβ. Conversely, the antioxidant effects of RosA could be blocked by Akt inhibitors LY294002, GSK-3β inhibitor LiCl, Nrf2 shRNA, or Fyn shRNA in Aβ-challenged PC12 cells. Consequently, the antioxidant effects of RosA are mediated predominantly by Akt/GSK-3β/Fyn pathway through increased activity of Nrf2. These results suggest, although do not prove, that RosA can be a promising candidate for neuroprotective treatment of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI