清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil

脑电双频指数 瑞芬太尼 异丙酚 医学 麻醉 一致相关系数 深度学习 人工智能 统计 计算机科学 数学
作者
Hyung‐Chul Lee,Ho Geol Ryu,Eun-Jin Chung,Chul-Woo Jung
出处
期刊:Anesthesiology [Lippincott Williams & Wilkins]
卷期号:128 (3): 492-501 被引量:109
标识
DOI:10.1097/aln.0000000000001892
摘要

Abstract Background The discrepancy between predicted effect-site concentration and measured bispectral index is problematic during intravenous anesthesia with target-controlled infusion of propofol and remifentanil. We hypothesized that bispectral index during total intravenous anesthesia would be more accurately predicted by a deep learning approach. Methods Long short-term memory and the feed-forward neural network were sequenced to simulate the pharmacokinetic and pharmacodynamic parts of an empirical model, respectively, to predict intraoperative bispectral index during combined use of propofol and remifentanil. Inputs of long short-term memory were infusion histories of propofol and remifentanil, which were retrieved from target-controlled infusion pumps for 1,800 s at 10-s intervals. Inputs of the feed-forward network were the outputs of long short-term memory and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the bispectral index. The performance of bispectral index prediction was compared between the deep learning model and previously reported response surface model. Results The model hyperparameters comprised 8 memory cells in the long short-term memory layer and 16 nodes in the hidden layer of the feed-forward network. The model training and testing were performed with separate data sets of 131 and 100 cases. The concordance correlation coefficient (95% CI) were 0.561 (0.560 to 0.562) in the deep learning model, which was significantly larger than that in the response surface model (0.265 [0.263 to 0.266], P < 0.001). Conclusions The deep learning model–predicted bispectral index during target-controlled infusion of propofol and remifentanil more accurately compared to the traditional model. The deep learning approach in anesthetic pharmacology seems promising because of its excellent performance and extensibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JrPaleo101完成签到,获得积分10
7秒前
大树完成签到 ,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
WSY完成签到 ,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
文学痞发布了新的文献求助10
3分钟前
文学痞完成签到,获得积分10
3分钟前
3分钟前
SL发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
4分钟前
健康的大船完成签到 ,获得积分10
5分钟前
SL完成签到,获得积分10
5分钟前
bubble完成签到 ,获得积分10
5分钟前
Young完成签到 ,获得积分10
5分钟前
liguanyu1078完成签到,获得积分10
5分钟前
5分钟前
情怀应助科研通管家采纳,获得10
7分钟前
春风沂水完成签到,获得积分10
7分钟前
zzxx完成签到,获得积分10
7分钟前
科研通AI5应助春风沂水采纳,获得10
7分钟前
林梓完成签到 ,获得积分10
8分钟前
华仔应助科研通管家采纳,获得10
9分钟前
高高的从波完成签到,获得积分10
10分钟前
10分钟前
Hygge发布了新的文献求助10
10分钟前
zyjsunye完成签到 ,获得积分0
10分钟前
lyx2010完成签到,获得积分10
10分钟前
稻子完成签到 ,获得积分10
11分钟前
田様应助科研通管家采纳,获得10
11分钟前
在水一方应助科研通管家采纳,获得10
11分钟前
JSEILWQ完成签到 ,获得积分10
11分钟前
12分钟前
Hello应助天空之城采纳,获得10
12分钟前
13分钟前
天空之城发布了新的文献求助10
13分钟前
脑洞疼应助科研通管家采纳,获得10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3323001
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798109
科研通“疑难数据库(出版商)”最低求助积分说明 758230