Triblock Copolymer Elastomers with Enhanced Mechanical Properties Synthesized by RAFT Polymerization and Subsequent Quaternization through Incorporation of a Comonomer with Imidazole Groups of about 2.0 Mass Percentage

共单体 共聚物 小角X射线散射 高分子化学 链式转移 材料科学 丙烯酸酯 聚合 极限抗拉强度 聚合物 自由基聚合 复合材料 散射 物理 光学
作者
Feng Jiang,Chu Fang,Juan Zhang,Wentao Wang,Zhigang Wang
出处
期刊:Macromolecules [American Chemical Society]
卷期号:50 (16): 6218-6226 被引量:51
标识
DOI:10.1021/acs.macromol.7b01414
摘要

ABA triblock copolymer elastomers (TBCPEs) were first synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization, for which poly(isobornyl acrylate) (PIBA) was chosen as the dispersed hard microdomains, whereas poly(n-butyl acrylate)-co-poly(1-vinylimidazole) (P(BA-co-VI)) was chosen as the rubbery matrix. Two much distinct glass transition temperatures were found, corresponding to the soft matrix and hard microdomains, respectively. Although the mass percentages of the incorporated third comonomer, 1-vinylimidazole, were just about 2.0%, the imidazole groups on the TBCPE chains could be ionically cross-linked by 1,6-dibromohexane to bring these TBCPEs into much strong ones, half-cross-linked TBCPEs-HC and full-cross-linked TBCPEs-FC. It is interesting to demonstrate that the ultimate tensile strength for TBCPEs-FC could be increased up to 10 times that for TBCPEs, and the elastic recovery could also be improved to above 90%, while the elongation at break just showed modest decreases. Transmission electron microscope (TEM) and small-angle X-ray scattering (SAXS) measurements disclosed that TBCPEs, TBCPEs-HC, and TBCPEs-FC all had typical microphase-separated morphology, with the interdomain distance tunable by the molecular mass of TBCPEs. In-situ SAXS measurements revealed that the hard microdomains in TBCPEs-HC could be orientated along the tensile direction during stretching and be recovered to the original state after stress release.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
Mayday完成签到,获得积分10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
无梦为安完成签到,获得积分10
1秒前
1秒前
乐乐应助科研通管家采纳,获得20
1秒前
情怀应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CipherSage应助冷酷凝梦采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Tourist应助科研通管家采纳,获得10
2秒前
tuanheqi应助科研通管家采纳,获得150
2秒前
4秒前
会会关注了科研通微信公众号
4秒前
风中的芷蕾完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
香菜碗里来完成签到,获得积分10
5秒前
缥缈幻翠完成签到,获得积分10
5秒前
5秒前
今后应助小小采纳,获得30
6秒前
小七2022完成签到,获得积分10
6秒前
章鱼完成签到,获得积分10
6秒前
小马甲应助可乐采纳,获得10
6秒前
英俊的铭应助董小婷采纳,获得10
8秒前
烟雾发布了新的文献求助10
8秒前
不能没有科研完成签到,获得积分10
9秒前
Betty发布了新的文献求助10
9秒前
hahasail发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169