Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging

医学 接收机工作特性 人工智能 置信区间 放射科 算法 卷积神经网络 机器学习 核医学 内科学 计算机科学
作者
Luciano M. Prevedello,Barbaros S. Erdal,John Ryu,Kevin Little,Mutlu Demirer,Songyue Qian,Richard White
出处
期刊:Radiology [Radiological Society of North America]
卷期号:285 (3): 923-931 被引量:223
标识
DOI:10.1148/radiol.2017162664
摘要

Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助欣一采纳,获得10
1秒前
FashionBoy应助林夏采纳,获得10
2秒前
pluto应助顺利毕业采纳,获得10
2秒前
慕青应助csaaaaa采纳,获得10
3秒前
3秒前
夏侯幻梦发布了新的文献求助30
4秒前
小王完成签到 ,获得积分10
4秒前
5秒前
adai完成签到,获得积分10
5秒前
6秒前
小HO完成签到,获得积分10
6秒前
badercao发布了新的文献求助40
6秒前
ajiwjn完成签到,获得积分10
6秒前
我叫胖子完成签到,获得积分10
6秒前
8秒前
田様应助王豆豆采纳,获得10
9秒前
麦可发布了新的文献求助100
10秒前
10秒前
11秒前
sss完成签到,获得积分10
11秒前
11秒前
dyfsj发布了新的文献求助10
12秒前
慕青应助pyrene采纳,获得10
13秒前
天狼发布了新的文献求助10
13秒前
Jasper应助迅速冥茗采纳,获得10
14秒前
眼睛大雨筠应助1101592875采纳,获得30
15秒前
啦啦啦应助江湖笑采纳,获得10
15秒前
rayce发布了新的文献求助10
16秒前
16秒前
16秒前
隐形曼青应助大大哈哈采纳,获得10
17秒前
林夏发布了新的文献求助10
17秒前
王豆豆完成签到,获得积分20
17秒前
受伤便当完成签到,获得积分10
18秒前
19秒前
19秒前
欣一完成签到,获得积分10
19秒前
CipherSage应助麦可采纳,获得100
19秒前
rarfen完成签到,获得积分10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938942
求助须知:如何正确求助?哪些是违规求助? 3484849
关于积分的说明 11029872
捐赠科研通 3214699
什么是DOI,文献DOI怎么找? 1776842
邀请新用户注册赠送积分活动 863047
科研通“疑难数据库(出版商)”最低求助积分说明 798700