Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging

医学 接收机工作特性 人工智能 置信区间 放射科 算法 卷积神经网络 机器学习 核医学 内科学 计算机科学
作者
Luciano M. Prevedello,Barbaros S. Erdal,John Ryu,Kevin Little,Mutlu Demirer,Songyue Qian,Richard White
出处
期刊:Radiology [Radiological Society of North America]
卷期号:285 (3): 923-931 被引量:223
标识
DOI:10.1148/radiol.2017162664
摘要

Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JTTTTJ完成签到,获得积分10
1秒前
1秒前
ANNNNN发布了新的文献求助10
2秒前
绾宸发布了新的文献求助10
2秒前
若有人兮完成签到,获得积分10
3秒前
秀丽的玉米应助Anoxia采纳,获得10
3秒前
朝天椒发布了新的文献求助10
3秒前
走啊发布了新的文献求助10
4秒前
叶世玉发布了新的文献求助10
6秒前
6秒前
6秒前
付强发布了新的文献求助10
6秒前
6秒前
7秒前
精明松思发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
10秒前
Jem完成签到,获得积分10
10秒前
烟花应助雪白卿采纳,获得30
11秒前
11秒前
theozhang发布了新的文献求助10
11秒前
12秒前
000200发布了新的文献求助10
12秒前
Xx发布了新的文献求助10
13秒前
吾身无拘发布了新的文献求助10
13秒前
14秒前
jingjun_Li发布了新的文献求助10
15秒前
15秒前
跳跃碧灵完成签到,获得积分10
16秒前
吞吞发布了新的文献求助30
16秒前
16秒前
朝天椒完成签到,获得积分10
16秒前
小黄发布了新的文献求助10
16秒前
shlie应助缥缈的冰旋采纳,获得10
18秒前
18秒前
大模型应助雪白卿采纳,获得10
18秒前
tian发布了新的文献求助10
19秒前
精明松思完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141