Efficient time series anomaly detection by multiresolution self-supervised discriminative network

增采样 异常检测 判别式 计算机科学 人工智能 系列(地层学) 模式识别(心理学) 异常(物理) 多分辨率分析 时间序列 特征(语言学) 机器学习 图像(数学) 小波 古生物学 离散小波变换 语言学 哲学 物理 小波变换 生物 凝聚态物理
作者
Desen Huang,Lifeng Shen,Zhongzhong Yu,Zhenjing Zheng,Min Huang,Qianli Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:491: 261-272 被引量:11
标识
DOI:10.1016/j.neucom.2022.03.048
摘要

Time series anomaly detection aims to identify abnormal subsequences in time series that are markedly different from the temporal behaviors of the entire sequence. Although previous density-based or proximity-based anomaly detection methods are usually used for anomaly detection, they are still suffering from high computational costs due to the need of traversing the whole training dataset during testing. Recently, reconstruction-based deep learning methods are popular for time series anomaly detection. However, they may not work well because their objective is to recover all information appeared in time series, including high-frequency noises. In this paper, we propose a simple yet efficient method called Multiresolution Self-Supervised Discriminative Network (MS2D-Net) for efficient time series anomaly detection. Specifically, the MS2D-Net includes a multiresolution downsampling module, a feature extraction module, and a self-supervised discrimination module. The multiresolution downsampling module generates some multiresolution samples by downsampling the original time series with different sampling rates and creates different pseudo-labels representing multi-scale behaviors in time series. Then, in the feature extraction module, a shallow convolution network is used to extract temporal dynamics in time series at multiple resolutions. Finally, the self-supervised discrimination module uses the pseudo-labels obtained from the multiresolution downsampling module as the self-supervised information to help separate anomalies from the normal time series samples. Experimental results show that the proposed MS2D-Net can outperform recent strong deep learning baselines on 18 benchmarks for time series anomaly detection with a much lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tetrahydron发布了新的文献求助10
刚刚
WWWWWW发布了新的文献求助10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
冰魂应助科研通管家采纳,获得10
刚刚
hanzhipad应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
温暖芷容完成签到 ,获得积分10
1秒前
852应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
hanzhipad应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
hanzhipad应助科研通管家采纳,获得10
2秒前
2秒前
zpc完成签到,获得积分10
2秒前
菠萝炒饭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
hanzhipad应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
萨伊普发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
liumuyi应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
小慧儿完成签到,获得积分10
5秒前
5秒前
wswddtd完成签到,获得积分10
5秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844092
求助须知:如何正确求助?哪些是违规求助? 3386468
关于积分的说明 10545405
捐赠科研通 3107201
什么是DOI,文献DOI怎么找? 1711524
邀请新用户注册赠送积分活动 824121
科研通“疑难数据库(出版商)”最低求助积分说明 774478