Reinforcement learning in urban network traffic signal control: A systematic literature review

NTSC公司 计算机科学 强化学习 范围(计算机科学) 人工智能 机器学习 电信 传输(电信) 程序设计语言
作者
Mohammad Noaeen,Atharva Naik,Liana Goodman,Jared Crebo,Taimoor Abrar,Zahra Shakeri Hossein Abad,Ana L. C. Bazzan,Behrouz H. Far
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:199: 116830-116830 被引量:138
标识
DOI:10.1016/j.eswa.2022.116830
摘要

Improvement of traffic signal control (TSC) efficiency has been found to lead to improved urban transportation and enhanced quality of life. Recently, the use of reinforcement learning (RL) in various areas of TSC has gained significant traction; thus, we conducted a systematic literature review as a systematic, comprehensive, and reproducible review to dissect all the existing research that applied RL in the network-level TSC domain, called as RL in NTSC or RL-NTSC for brevity. The review only targeted the network-level articles that tested the proposed methods in networks with two or more intersections. This review covers 160 peer-reviewed articles from 30 countries published from 1994 to March 2020. The goal of this study is to provide the research community with statistical and conceptual knowledge, summarize existence evidence, characterize RL applications in NTSC domains, explore all applied methods and major first events in the defined scope, and identify areas for further research based on the explored research problems in current research. We analyzed the extracted data from the included articles in the following seven categories: (i) publication and authors' data, (ii) method identification and analysis, (iii) environment attributes and traffic simulation, (iv) application domains of RL-NTSC, (v) major first events of RL-NTSC and authors' key statements, (vi) code availability, and (vii) evaluation. This paper provides a comprehensive view of the past 26 years of research on applying RL to NTSC. It also reveals the role of advancing deep learning methods in the revival of the research area, the rise of using non-commercial microscopic traffic simulators, a lack of interaction between traffic and transportation engineering practitioners and researchers, and a lack of proposal and creation of testbeds which can likely bring different communities together around common goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助豪123456采纳,获得20
1秒前
2秒前
敬鱼完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
云岫完成签到 ,获得积分10
4秒前
嗯嗯嗯完成签到,获得积分10
5秒前
5秒前
常芹完成签到,获得积分10
5秒前
暮寻屿苗完成签到 ,获得积分10
6秒前
nihao完成签到,获得积分10
6秒前
lipppfff完成签到,获得积分10
7秒前
朴素可冥完成签到,获得积分10
7秒前
渝余发布了新的文献求助10
7秒前
情怀应助沟通亿心采纳,获得10
7秒前
英俊的铭应助糜厉采纳,获得10
7秒前
科研通AI6应助科研鸟采纳,获得10
7秒前
8秒前
常芹发布了新的文献求助10
9秒前
qqwdss完成签到,获得积分10
9秒前
ff完成签到,获得积分10
9秒前
浮云发布了新的文献求助10
9秒前
10秒前
GRJ完成签到,获得积分10
11秒前
朴素可冥发布了新的文献求助10
11秒前
淡然善斓完成签到,获得积分10
12秒前
GRJ发布了新的文献求助30
15秒前
新嗨完成签到,获得积分10
15秒前
Ava应助丝丝采纳,获得10
16秒前
浮云完成签到,获得积分10
16秒前
haha完成签到,获得积分10
16秒前
Cassie完成签到,获得积分10
16秒前
16秒前
kyoko886完成签到,获得积分10
16秒前
渝余完成签到,获得积分20
16秒前
新明发布了新的文献求助10
17秒前
坦率如柏完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225009
求助须知:如何正确求助?哪些是违规求助? 3758357
关于积分的说明 11813766
捐赠科研通 3419943
什么是DOI,文献DOI怎么找? 1876979
邀请新用户注册赠送积分活动 930400
科研通“疑难数据库(出版商)”最低求助积分说明 838582