Supervised Contrastive Learning With Structure Inference for Graph Classification

计算机科学 推论 判别式 图形 人工智能 理论计算机科学 模式识别(心理学) 机器学习
作者
Junzhong Ji,Jia Hao,Yating Ren,Minglong Lei
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1684-1695 被引量:7
标识
DOI:10.1109/tnse.2022.3233479
摘要

Advanced graph neural networks have shown great potentials in graph classification tasks recently. Different from node classification where node embeddings aggregated from local neighbors can be directly used to learn node labels, graph classification requires a hierarchical accumulation of different levels of topological information to generate discriminative graph embeddings. Still, how to fully explore graph structures and formulate an effective graph classification pipeline remains rudimentary. In this paper, we propose a novel graph neural network based on supervised contrastive learning with structure inference for graph classification. First, we propose a data-driven graph augmentation strategy to enhance the existing connections. Concretely, we resort to a structure inference stage based on diffusion cascades to recover possible connections with high node similarities. Second, to improve the contrastive power of graph neural networks, we propose a supervised contrastive loss for graph classification. With the integration of label information, the one-vs-many contrastive learning is extended to a many-vs-many setting. The supervised contrastive loss and structure inference can be naturally incorporated within the hierarchical graph neural networks where the topological patterns can be fully explored to produce discriminative graph embeddings. Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐应助祯果粒采纳,获得10
刚刚
1秒前
1秒前
鼓励男孩发布了新的文献求助10
3秒前
完美冷安完成签到,获得积分10
4秒前
4秒前
6秒前
子予发布了新的文献求助10
7秒前
8秒前
liu完成签到,获得积分10
8秒前
566发布了新的文献求助10
9秒前
11秒前
五五哥发布了新的文献求助10
14秒前
祯果粒发布了新的文献求助10
14秒前
15秒前
水若琳发布了新的文献求助10
17秒前
Young应助鲜艳的熊猫采纳,获得10
17秒前
李健应助566采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
茵茵应助科研通管家采纳,获得20
19秒前
19秒前
起风了完成签到,获得积分10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
科目三应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
英俊的铭应助安静采纳,获得10
20秒前
怡然铃铛发布了新的文献求助10
21秒前
22秒前
24秒前
25秒前
发酱发布了新的文献求助10
25秒前
孤独的小屁孩完成签到,获得积分10
27秒前
可靠荠发布了新的文献求助10
27秒前
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148