Predicting Corrosion Delamination Failure in Active Implantable Medical Devices: Analytical Model and Validation Strategy

材料科学 腐蚀 硅橡胶 分层(地质) 复合材料 涂层 聚合物 天然橡胶 电极 纳米技术 化学 物理化学 俯冲 古生物学 生物 构造学
作者
Adrian Onken,Helmut Schütte,Anika Wulff,Heidi Lenz-Strauch,Michaela Kreienmeyer,Sabine Hild,Thomas Stieglitz,Stefan Gaßmann,Thomas Lenarz,Theodor Doll
出处
期刊:Bioengineering [MDPI AG]
卷期号:9 (1): 10-10 被引量:6
标识
DOI:10.3390/bioengineering9010010
摘要

The ingress of body fluids or their constituents is one of the main causes of failure of active implantable medical devices (AIMDs). Progressive delamination takes its origin at the junctions where exposed electrodes and conductive pathways enter the implant interior. The description of this interface is considered challenging because electrochemically-diffusively coupled processes are involved. Furthermore, standard tests and specimens, with clearly defined 3-phase boundaries (body fluid-metal-polymer), are lacking. We focus on polymers as substrate and encapsulation and present a simple method to fabricate reliable test specimens with defined boundaries. By using silicone rubber as standard material in active implant encapsulation in combination with a metal surface, a corrosion-triggered delamination process was observed that can be universalised towards typical AIMD electrode materials. Copper was used instead of medical grade platinum since surface energies are comparable but corrosion occurs faster. The finding is that two processes are superimposed there: First, diffusion-limited chemical reactions at interfaces that undermine the layer adhesion. The second process is the influx of ions and body fluid components that leave the aqueous phase and migrate through the rubber to internal interfaces. The latter observation is new for active implants. Our mathematical description with a Stefan-model coupled to volume diffusion reproduces the experimental data in good agreement and lends itself to further generalisation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
magickou发布了新的文献求助10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
隐形曼青应助YUMMY采纳,获得10
刚刚
昏睡的蟠桃应助科研通管家采纳,获得150
1秒前
wanci应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
舒服的元瑶完成签到,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
秀秀应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得30
2秒前
所所应助科研通管家采纳,获得10
2秒前
寒风完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
chenqiumu应助科研通管家采纳,获得100
3秒前
沈小小应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
wwyy应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得50
3秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104