Learning-Based Branch-and-Price Algorithms for the Vehicle Routing Problem with Time Windows and Two-Dimensional Loading Constraints

车辆路径问题 列生成 计算机科学 数学优化 分支和切割 算法 布线(电子设计自动化) 整数规划 数学 计算机网络
作者
Xiangyi Zhang,Lu Chen,Michel Gendreau,André Langevin
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1419-1436 被引量:31
标识
DOI:10.1287/ijoc.2021.1110
摘要

A capacitated vehicle routing problem with two-dimensional loading constraints is addressed. Associated with each customer are a set of rectangular items, the total weight of the items, and a time window. Designing exact algorithms for the problem is very challenging because the problem is a combination of two NP-hard problems. An exact branch-and-price algorithm and an approximate counterpart are proposed to solve the problem. We introduce an exact dominance rule and an approximate dominance rule. To cope with the difficulty brought by the loading constraints, a new column generation mechanism boosted by a supervised learning model is proposed. Extensive experiments demonstrate the superiority of integrating the learning model in terms of CPU time and calls of the feasibility checker. Moreover, the branch-and-price algorithms are able to significantly improve the solutions of the existing instances from literature and solve instances with up to 50 customers and 103 items. Summary of Contribution: We wish to submit an original research article entitled “Learning-based branch-and-price algorithms for a vehicle routing problem with time windows and two-dimensional loading constraints” for consideration by IJOC. We confirm that this work is original and has not been published elsewhere, nor is it currently under for publication elsewhere. In this paper, we report a study in which we develop two branch-and-price algorithms with a machine learning model injected to solve a vehicle routing problem integrated the two-dimensional packing. Due to the complexity brought by the integration, studies on exact algorithms in this field are very limited. Our study is important to the field, because we develop an effective method to significantly mitigate computational burden brought by the packing problem so that exactness turns to be achievable within reasonable time budget. The approach can be generalized to the three-dimensional case by simply replacing the packing algorithm. It can also be adapted for other VRPs when high-dimensional loading constraints are concerned. Broadly speaking, the study is a typical example of adopting supervised learning to achieve acceleration for operations research algorithms, which expands the envelop of computing and operations research. Hence, we believe this manuscript is appropriate for publication by IJOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超级李包包完成签到,获得积分10
1秒前
塔麻头发布了新的文献求助10
1秒前
科研通AI2S应助haimianbaobao采纳,获得10
1秒前
2秒前
牛乃唐完成签到 ,获得积分10
2秒前
2秒前
枸杞子发布了新的文献求助10
3秒前
婕哥发布了新的文献求助10
3秒前
我是老大应助绝世冰淇淋采纳,获得10
4秒前
喵不二完成签到,获得积分10
4秒前
sk夏冰完成签到 ,获得积分10
4秒前
萱1988发布了新的文献求助10
4秒前
5秒前
余南发布了新的文献求助10
5秒前
SciGPT应助34101127采纳,获得10
5秒前
lijg71完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
bab发布了新的文献求助10
6秒前
6秒前
6秒前
李健应助nana采纳,获得10
7秒前
薇薇辣完成签到 ,获得积分10
7秒前
lkh完成签到,获得积分10
7秒前
gaogao完成签到,获得积分10
7秒前
8秒前
yang完成签到,获得积分10
9秒前
9秒前
简单的小土豆完成签到 ,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得60
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458